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Introduction

Data mining and (inferential) statistics have traditionally two
different point of views

» data mining: the data is the complete representation of the
world and of the phenomena we are studying

> statistics: the data is obtained from an underlying generative
process, that is what we really care about

Similar questions but different flavours!
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Example

Data: information from two online communities C; and Cs,
regarding whether each post is in a given topic T

» Data mining: “what fraction of posts in C are related to T'?
What fraction of posts in (5 are related to 77"

» Statistics: “What is the probability that a post from C is
related to T'? What is the probability that a post from Cj is
related to T'?"

Note: the two are clearly related, but different!
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Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees
on the underlying generative process?
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Statistically-Sound Pattern Mining

How do we efficiently identify patterns in data with guarantees
on the underlying generative process?

We use the statistical hypothesis testing framework
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Statistical Hypothesis Testing

We are given:
» a dataset D

» a question we want to answer
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Statistical Hypothesis Testing

We are given:
» a dataset D

» a question we want to answer = a pattern S
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Example: market basket analysis

Dataset D: transactions = set of items, label (student/professor)
Pattern S: subset of items (orange, tomato, broccoli)
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Example: market basket analysis

Dataset D: transactions = set of items, label (student/professor)
Pattern S: subset of items (orange, tomato, broccoli)

» |

A

% v
A v dlely
p:4 % % ¢
2 %L @
1 v FToY
a . ooy
A * %L
aj - Tlelv,

Question: is S associated with one of the two labels? 9/101



Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the
default theory, which corresponds to “nothing interesting” for
pattern S.
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Statistical Hypothesis Testing: Formalization

Frame the question in terms of a null hypothesis, describing the
default theory, which corresponds to “nothing interesting” for
pattern S.

The goal is to use the data to either reject H, (S is interesting!”)
or not (“S is not interesting).

This is decided based on a test statistic, that is, a value
rs = fg(D) that describes S in D
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Statistical Hypothesis Testing: p-value
Let zg = fs(D) the value of the test statistic for our dataset D.
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Statistical Hypothesis Testing: p-value
Let zg = fs(D) the value of the test statistic for our dataset D.

Let Xg be the random variable describing the value of the test
statistic under the null hypothesis H (i.e., when Hj is true)

p-value: p = Pr[Xg more extreme than g : Hy is true]

“Xs more extreme than xg": depends on the test, may be
Xg = xg or Xg < xg or something else. .

Rejection rule:
Given a statistical level a« € (0,1): reject Hy iff p < a= S'is

significant!
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There are two types of errors we can make:

12/101



Statistical Hypothesis Testing: Errors

There are two types of errors we can make:
» type | error: reject Hy when Hj is true = flag S as significant
when it is not (false discovery)

12/101



Statistical Hypothesis Testing: Errors

There are two types of errors we can make:
» type | error: reject Hy when Hj is true = flag S as significant
when it is not (false discovery)
» type Il error: do not reject Hy when H is false = do not flag
S as significant when it is

12/101



Statistical Hypothesis Testing: Errors

There are two types of errors we can make:
» type | error: reject Hy when Hj is true = flag S as significant
when it is not (false discovery)
» type Il error: do not reject Hy when H is false = do not flag
S as significant when it is

REALITY
H, false H, true

reject H, Correct!

DECISION

accept Hy| Type Il error Correct!

12/101



Statistical Hypothesis Testing: Errors

There are two types of errors we can make:
» type | error: reject Hy when Hj is true = flag S as significant
when it is not (false discovery)
» type Il error: do not reject Hy when H is false = do not flag
S as significant when it is

Type I error Type II error
REALITY (false positive) (false negative)

H, false H, true 3 E‘ You're not
f |__pregnant

reject H, Correct!

DECISION

accept Hy| Type Il error Correct!

12/101



Statistical Hypothesis Testing: Errors

There are two types of errors we can make:
» type | error: reject Hy when Hj is true = flag S as significant
when it is not (false discovery)
» type Il error: do not reject Hy when H is false = do not flag
S as significant when it is

Type I error Type II error
REALITY (false positive) (false negative)
H, false H, true f You’re not
|__pregnant
> rejectH, Correct!
=}
] 2%
[} You're
'5' |_pregnant
accept Hy| Type Il error Correct! v
Theorem

Using the rejection rule, the probability of a type | error is < a 12/101
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Statistical Hypothesis Testing: Power

Avoiding type | errors is not everything!
If it was, it would be enough to never flag a pattern as significant. ..

Power:
A test has power (3 if Pr[H, is rejected : Hy is false] =

Note: for a test with power 3, we have Pr[type Il error] =1 —

(Power is not everything: if it was, it would be enough to always
flag all patterns as significant. . .)
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Example: Testing for Independence
Given:

> transactional dataset D = {t1, ...

label g(tz) € {Co,Cl}
> a pattern S

,tn}, each transaction ¢; has a
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Example: Testing for Independence

Given:
> transactional dataset D = {t1,...,t,}, each transaction ¢; has a
label £(t;) € {co, c1}
> a pattern S
Goal: understand if the appearance of S in transactions (S < t;)
and the transactions labels (¢(t;)) are independent.

Null hypothesis Hy: the events "S < t;" and “((t;) = 1" are
independent.

Alternative hypothesis: there is a dependency between “S < ;"
and “U(t;) = 1"
14/101



Example: market basket analysis
S = {orange, tomato, broccoli}
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Example: market basket analysis
S = {orange, tomato, broccoli}

-
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Hy: presence of S is independent of (not associated with) label
“professor” 15/101



Example: Testing for Independence (2)

Useful representation of the data: contingency table
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Example: Testing for Independence (2)

Useful representation of the data: contingency table

Sct;| S $ t; Row m.
f(tl) = C1 0’1(8) ny — 0'1(8) n1
g(tz) = Cy 0'0(8) ng — 0'0(8) U0
Col. m. |a(S) [n—0a(S) |n

» 01(S) = number of transactions containing S (=support of S)

with label ¢;

> 00(S) = support of S with label ¢

» 0(S) = 0¢(S) + 01(S) = support of S in D
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Example: Testing for Independence (2)

Useful representation of the data: contingency table

v

v

v

Sct;| S $ t; Row m.
f(tl) = C1 0’1(8) ny — 0'1(8) n1
g(tz) = Cy 0'0(8) ng — 0'0(8) U0
Col. m. |a(S) [n—0a(S) |n

01(S) = number of transactions containing S (=support of S)
with label ¢;

00(S) = support of S with label ¢
o(S) = 0o(S) + 01(S) = support of S in D
n; = number transactions with label ¢;
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Example: Testing for Independence (3)

Useful representation of the data: contingency table

Sct; | S $ t; Row m.
f(tl) =C 0'1(8) ny — 0'1(8) ni
E(tl) = Cy 0'0(8) ng — 0'0(8) U0
Col. m. |a(S) [n—0a(S) |n

Test statistic = 01(5)
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Example: market basket analysis

a

Value of test statistic = 01(S)
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Example: market basket analysis

a

K VL@

A v oy
b4 L Y= ¢
2) (=[] (@
2l [-Iv] WO
all |- 7|y
A * %%

8 |- slelv,

Sct;|SEt;| Rowm.
g(tl) = 3 1 4
E(tz) = Cy 1 3 4
Col. m. 4 4 8

Value of test statistic = 01(S) = 3
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Example: Testing for Independence (3)
Useful representation of the data: contingency table
Sct;| SEt; Row m.
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E(tz) = () 0'0(8) ng — 0'0(8) g
Col. m. |a(S) [n—0a(S) |n

Test statistic = 01(9)

19/101



Example: Testing for Independence (3)
Useful representation of the data: contingency table
Sct;| SEt; Row m.

g(tz) = C 0'1(8) ny — 0'1(8) i
E(tz) = () 0'0(8) ng — O'()(S) g
Col. m. |a(S) [n—0a(S) |n

Test statistic = 01(9)

p-value: how do we compute it?

19/101



Example: Testing for Independence (3)
Useful representation of the data: contingency table
Sct;| SEt; Row m.

g(tz) = C 0'1(8) ny — 0'1(8) i
E(tz) = () 0'0(5) ng — O'()(S) g
Col. m. |a(S) [n—0a(S) |n

Test statistic = 01(9)

p-value: how do we compute it?

Most common method: Fisher’s exact test
19/101
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Fisher's exact test

Sct | S $ t; Row m.
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Fisher's exact test

ti S $ ti Row m.
Ut) =c1 | o1(S) | n1—a1(S) | m
E(tl) = C 0'0(8) ng — 00(8) U0
Col. m. |a(S) [n—0a(S) |n

Assumption: the column marginals (¢(S), n — o(S) and the row
marginals (ng, n1) are fixed.

= under the null hypothesis (independence), the support of S in
class ¢; follows an hypergeometric distribution of parameters n, nq,
and ogs

= the p-value is easily computable!

21/101
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Example: market basket analysis
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Example: market basket analysis
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Xs ~ hypergeometric of parameters 8§, 4,

= Probability of table = Pr(Xs = 3) =

Sct; | SEt; | Rowm.
g(ti) =C 3 1 4
g(tl) = Cp 1 3 4
Col. m. 4 4 8
4\ (4
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p-value = Pr(Xs > 3) = >, s Pr(Xs = k) = 0.243
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Example: market basket analysis
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Xs ~ hypergeometric of parameters 8§, 4,

= Probability of table = Pr(Xs =3) =

Sct; | SEt; | Rowm.
E(tl) =C 3 1 4
g(tl) = Cp 1 3 4
Col. m. 4 4 8
(g)(?) = (0.228

(

8
4

)

p-value = Pr(Xs > 3) = >, . Pr(Xs = k) = 0.243

If « = 0.05 = &S is not associated with label “professor”
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y? test

In the old days: “Fisher's exact test is computationally

expensive..." G
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» Xs1 = r.v. describing the support S in class ¢;
» X5 = r.v. describing num. transactions without & in class ¢
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Test statistic: X = ;55 jeqo1) (Xij
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x? test

Theorem
When n — +o0, X — x? distribution with 1 degree of freedom
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Y2 test

Theorem

When n — +o0, X — x? distribution with 1 degree of freedom

Why is this important? There are tables to compute probabilities
for the 2 distribution

Note: the y? test is the asymptotic version of Fisher's exact test.
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Example: market basket analysis

i
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Xs ~ x? with 1 degree of freedom
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Example: market basket analysis
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Xs ~ x? with 1 degree of freedom
Test statistic: 2

25/101



Example: market basket analysis

o

B VL@

A v Jlev

2 L Y1 ¢ Sct; | SEt; | Rowm.
2 %y @ ((ti)=c1 |3 1 4
— ((t)=co | 1 3 4
g % fev CoI.m.O 4 4 8

a - ey

A LY

8 |- Flelv

Xs ~ x? with 1 degree of freedom
Test statistic: 2

p-value = Pr(Xs > 2) = 0.16
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Example: market basket analysis

&) L@ )

A v TJlelv

b4 L Y1 ¢ Sct; | SEt; | Rowm.
g .“' (") E(ti)ch 3 1 4

— g(ti)=60 1 3 4

2 "% fev Col. m. 4 4 8

8 . v ey

A sy

8 |- Flelv

Xs ~ x? with 1 degree of freedom
Test statistic: 2

p-value = Pr(Xs > 2) = 0.16

If « = 0.05 = S is not associated with label “professor” 25/101



Barnard's exact test

97

ct; | SEt Row m.
é(tl) =C 0'1(8) ny — 0'1(8) ny
é(tl) = Cp 0’0(8) no — 0'0(8) no
Col. m. a(S) n—o(S) n

Assumption: the row marginals (ng, n1) are fixed
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Barnard's exact test

Sct; | S dt; Row m.
g(ti) =C 0'1(8) ny — 0'1(8) ni
Ut;) =co | 00(S) | mo—00(S) | no

0
Col. m. o(S) | n—a(S)

n

Assumption: the row marginals (ng, n1) are fixed but the column

marginals (o(S5), n — o(5)) are not!

PI‘[S c it f(tz) = C()] = T
PI‘[S c i f(tz) = Cl] = T

Null hypothesis Hy: mp =m ==

7 is nuisance parameter, in the sense that we are not interested in
its value, but its value defines the distribution of our observations
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Bernard's exact test(2)

Sct; | S<Et; Row m.
g(ti) =C 0'1(8) ny — 0'1(8) nq
g(tl) = Cy 0’0(8) nog — 0'0(8) no
Col. m. a(S) | n—o(S) n

PI"[S i f(tl) 0] 70

PI’[S ct: f(tl) = Cl] = T

Null hypothesis Hy: mp =m ==
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Bernard's exact test(2)

Sct; | S<Et; Row m.
g(ti) =C 0'1(8) ny — 0'1(8) nq
g(tl) = Cy 0’0(8) nog — 0'0(8) )

Col. m. a(S) n—o(S) n

}—U
—
05
N
=
=
=
3
o

< 1 ;) = Co| =
PI’[SQ t; : f(tl) = Cl] = T

Null hypothesis Hy: mp =m ==

How do we compute the p-value?
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Bernard's exact test(3)
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Bernard's exact test(3)

Test statistic: probability of the contingency table
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Test statistic: probability of the contingency table

Fixed 7, the probability of the contingency table is easy to compute.
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Bernard's exact test(3)

Test statistic: probability of the contingency table
Fixed 7, the probability of the contingency table is easy to compute.

However, computing the p-value is computationally expensive!
» 7 is unknown: consider a grid of values for 7

» need to enumerate all tables more extreme than the observed
table for a given 7
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Example: market basket analysis
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Example: market basket analysis
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probability of table given m: Pr(4,3|7) = (})(3) ()" (1 — 7)*
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Example: market basket analysis

<

B VL [®

A v JTOov

b4 Y= ¢ Sct, [Sdt | Rowm.
2) [-IvY| e ) =c1 | 3 1 1

el |- U(t) =co | 1 3 1

§ .‘ ::X Col. m. 4 4 8

A %L

ﬂ bd I‘“WJ

probability of table given m: Pr(4,3|7) = (})(3) ()" (1 — 7)*
more extreme tables (given 7):

T(x,y,m) ={(@"y) : Pr(@’,y" | m) < Pr(4,3|m)}
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Example: market basket analysis

8] vL@ |}

f v dley

b4 \3. ¢ Sct, [Sdt | Rowm.
2) [-IvY| e ) =c1 | 3 1 1
= . = it) =co | 1 3 1

§ .‘ ::2‘: Col. m. 4 4 8

A %L

a) |- Tlelv

probability of table given m: Pr(4,3|7) = (})(3) ()" (1 — 7)*

more extreme tables (given 7):
T(x,y,7) ={(2",y): Pr(a/,y | m) < Pr(4,3|n)}
p-value: max Z Pr(z, y|m)
€0 T (0(8).01(S).m) 29/101



Example: market basket analysis

<

R[] s[L[E

A v TJlow

b4 ‘:— ¢ Sct; [ SEt; | Rowm.
2 * %] @ (t)=c | 3 1 4

2 [ -t £, f(tz) = Cp 1 3 4

§ s v ~ :$ Col. m. 4 4 8

Al [vL

ﬂ 2 | { “ VM’J

probability of table given m: Pr(4, 3|r) = (‘11) (g) () (1 —n)*

more extreme tables (given 7):
T(z,y,m) = {(2"y) : Pr(@’,y" [ m) < Pr(4,3|m)}
p-value: max Z Pr(z,y|r) = 0.50 (for m = 0.4)
m€(0,1)
(z,y)eT(0(8),01(S),m) 29/101



Fisher's exact text vs Barnard’s exact test

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed
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Fisher's exact text vs Barnard’s exact test

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed

Note: Barnard's exact test depends on (unknown) nuisance
parameter m = probability that pattern S appears in a transaction.

What about Fisher’'s exact test?

Fixing the frequency o(S) of S ~ fixing the probability that S
appears in a transaction
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Fisher's exact text vs Barnard's exact test (2)

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed

31/101



Fisher's exact text vs Barnard's exact test (2)

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed

Which one is more appropriate?
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Fisher's exact text vs Barnard's exact test (2)

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed

Which one is more appropriate?

Depends on how the data is collected!
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Fisher's exact text vs Barnard's exact test (2)

Fisher’s test: assumes the frequency o(.S) of the pattern is fixed
Barnard’s test: does not assume the frequency o(S) of the pattern
is fixed

Which one is more appropriate?
Depends on how the data is collected!

In practice: everybody uses Fisher's text (computational reasons?)
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Pattern mining and statistical hypothesis testing
Previous part: we had one pattern S we are interested in

Let pg be the p-value for S.
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Pattern mining and statistical hypothesis testing
Previous part: we had one pattern S we are interested in
Let pg be the p-value for S.

Rejection rule:
Given a statistical level o € (0,1): reject Hy iff p<a=3S'is
significant!
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Let pg be the p-value for S.

Rejection rule:
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significant!

= probability false discovery < «

KDD scenario: we consider multiple hypotheses given by our
dataset D
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Pattern mining and statistical hypothesis testing
Previous part: we had one pattern S we are interested in
Let pg be the p-value for S.

Rejection rule:

Given a statistical level a € (0,1): reject Hy iff p < o= S'is
significant!

= probability false discovery < «

KDD scenario: we consider multiple hypotheses given by our
dataset D

What happens if we use the rejection rule above?
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Outline

1. Introduction and Theoretical Foundations

1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing

1.3 Fundamental Tests

1.4 Multiple Hypothesis Testing

1.5 Selecting Hypothesis

1.6 Hypotheses Testability

2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
4. Final Remarks
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Multiple hypothesis testing
Let H be the set of hypotheses we want to test, and m = |H|.

E.g., itemsets from a universe Z of items: m = 2%l — 1
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Multiple hypothesis testing
Let H be the set of hypotheses we want to test, and m = |H].
E.g., itemsets from a universe Z of items: m = 2%l — 1
Proposition

If we use « to test the significance of each hypothesis in 7, then

E[number of false discoveries| = m x «
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Multiple hypothesis testing
Let H be the set of hypotheses we want to test, and m = |H].

E.g., itemsets from a universe Z of items: m = 2%l — 1

Proposition

If we use « to test the significance of each hypothesis in 7, then

E[number of false discoveries| = m x «

Typical « to test a single hypothesis: o = 0.05 or 0.01
= many false discoveries in expectation
= at least one with high probability!
We want guarantees on the probability of any false discovery
34/101



Multiple Hypothesis testing procedures

We want guarantees on the probability of any false discovery

Family-Wise Error Rate (FWER):
Pr[> 0 false discoveries]

We want FWER < «, for some a € (0, 1).

How to achieve this goal?
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Multiple Hypothesis testing procedures

We want guarantees on the probability of any false discovery

Family-Wise Error Rate (FWER):
Pr[> 0 false discoveries]

We want FWER < «, for some a € (0, 1).

How to achieve this goal?
» Bonferroni correction

» Bonferroni-Holm procedure

»---

35/101



Bonferroni correction

H: set of hypotheses (patterns) to test, m = |H|.
For § € H, let Hgs be the corresponding null hypothesis.
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For § € H, let Hgs be the corresponding null hypothesis.

Rejection rule: Given a statistical level o € (0, 1):
reject Hg (i.e., flag S as significant) iff p < &
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Bonferroni correction

H: set of hypotheses (patterns) to test, m = |H|.

For § € H, let Hgs be the corresponding null hypothesis.

Rejection rule: Given a statistical level o € (0, 1):
reject Hg (i.e., flag S as significant) iff p < &

Why does this approach controls the FWER?

» for each S, Pr[S is a false discovery | < &

m
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Bonferroni correction

H: set of hypotheses (patterns) to test, m = |H|.
For § € H, let Hgs be the corresponding null hypothesis.
Rejection rule: Given a statistical level o € (0, 1):

reject Hg (i.e., flag S as significant) iff p < &
Why does this approach controls the FWER?

> for each S, Pr[S is a false discovery | < &

> union bound on m events: Pr[> 0 false discoveries |
< Dlgey Pr[S is false discovery | < [H|& < o
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Choosing hypotheses before testing?

Alphabet of items Z with |Z| = 6000
Dataset D with 10 transactions with label ¢;, 10 with label ¢
Hypotheses H =7

» “large m, small data: nothing will be flagged as significant!” G
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Choosing hypotheses before testing?

Alphabet of items Z with |Z| = 6000
Dataset D with 10 transactions with label ¢;, 10 with label ¢
Hypotheses H =7

» “large m, small data: nothing will be flagged as significant!” G
> “let’s select some hypotheses first, and then do the testing...":
find pattern §* = arg maxsey (01(S) — 0o(S)).

» “l am going to test only &*!"
E.g., 01(S*) = 10,00(S*) = 0. Fisher's test p-value = 0.0001
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Choosing hypotheses before testing?

Alphabet of items Z with |Z| = 6000
Dataset D with 10 transactions with label ¢;, 10 with label ¢
Hypotheses H =7

» “large m, small data: nothing will be flagged as significant!” G
> “let’s select some hypotheses first, and then do the testing...":
find pattern §* = arg maxsey (01(S) — 0o(S)).
» “l am going to test only &*!"
E.g., 01(S*) = 10,00(S*) = 0. Fisher's test p-value = 0.0001
> “Sx is very significant!!l” @
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“S is very significant!!!" ©
BUT IT IS NOT!
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“S is very significant!!!" ©
BUT IT IS NOT!

Assume that D is generated as follows:
» Each item/pattern S will appear exactly 10 times

» Fori =1,...,10, place § in the i-th transaction labeled ¢j with
probability 1/2, and the i-th transaction labeled ¢; otherwise

No pattern S is associated with class labels!
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“S is very significant!!!" ©
BUT IT IS NOT!
Assume that D is generated as follows:

» Each item/pattern S will appear exactly 10 times

» Fori =1,...,10, place § in the i-th transaction labeled ¢j with
probability 1/2, and the i-th transaction labeled ¢; otherwise

No pattern S is associated with class labels!
For a given S, Pr(01(S) = 10 and 0¢(S) = 0) = (1/2)" = 1/1024

In expectation, ~ 5 patterns with 01(S) = 10 and 0¢(S) = 0.
they are all false discoveries!
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Where is the problem?

We selected the hypothesis to test on the basis of its support o1(S)
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Where is the problem?

We selected the hypothesis to test on the basis of its support o1(S)
01(S) = 10 — 0¢(S) is clearly related to the p-value

We have essentially looked at the p-values of all hypotheses
and then acted as if we did not! GH
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Where is the problem?

We selected the hypothesis to test on the basis of its support o1(S)
01(S) = 10 — 0¢(S) is clearly related to the p-value

We have essentially looked at the p-values of all hypotheses
and then acted as if we did not! GH

ONE DOES NOT'SIMPLY]

by el

»
FORGET'EMBRRRASSING MOMENTS

39/101



Outline

1. Introduction and Theoretical Foundations

1.1 Introduction to Significant Pattern Mining
1.2 Statistical Hypothesis Testing

1.3 Fundamental Tests

1.4 Multiple Hypothesis Testing

1.5 Selecting Hypothesis

1.6 Hypotheses Testability

2. Mining Statistically-Sound Patterns
3. Recent developments and advanced topics
4. Final Remarks

40/101



Selecting hypotheses

A smaller ‘H will lead to a higher corrected significance threshold
a/|H|, thus may lead to higher power.
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Selecting hypotheses

A smaller ‘H will lead to a higher corrected significance threshold
a/|H|, thus may lead to higher power.

QUESTION: can we shrink H a posteriori?

l.e., Can we use D to select H' < H

such that H\'H' only contains non-significant hypotheses?
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Selecting hypotheses

A smaller ‘H will lead to a higher corrected significance threshold
a/|H|, thus may lead to higher power.

QUESTION: can we shrink H a posteriori?

l.e., Can we use D to select H' < H

such that H\'H' only contains non-significant hypotheses?

ANSWER: No...and yes! ©
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How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

42/101



How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using D.
2) Use the test results to select which hypotheses to include in H'.

3) Use Bonferroni correction on H' to bound the FWER (for )
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How not to select hypotheses

The one thing you must remember from this tutorial!

Do not do this:

1) Perform each individual test for each hypothesis using D.

2) Use the test results to select which hypotheses to include in H'.
3) Use Bonferroni correction on H' to bound the FWER (for )

Selecting ‘H' must be done without performing the tests on D.
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The holdout approach
1. Partition D into Dy and Dy: D1 U Dy =D and D1 N Dy = .

2. Apply some selection procedure to D; to select H’

(it may include performing the tests on D).

3) Perform the individual test for each hypothesis in H' on D,
using the Bonferroni correction on H'.
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The holdout approach
1. Partition D into Dy and Dy: D1 U Dy =D and D1 N Dy = .

2. Apply some selection procedure to D; to select H’

(it may include performing the tests on D).

3) Perform the individual test for each hypothesis in H' on D,
using the Bonferroni correction on H'.

Splitting D is similar to using a training set and a test set.
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An example: holdout for significant itemsets

G. Webb, Discovering Significant Patterns, Mach. Learn. 2007

Exploratory
Rule Discovery

Statistical
Evaluation

—-—
-— _.
>
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When holdout works and why

Holdout can be used only when D can be partitioned into D; and
D, s.t. Dy and Dy are samples from the null distribution.

45/101



When holdout works and why

Holdout can be used only when D can be partitioned into D; and
D, s.t. Dy and Dy are samples from the null distribution.

Such partitioning may not exist or be known.

45/101



When holdout works and why

Holdout can be used only when D can be partitioned into D; and
D, s.t. Dy and Dy are samples from the null distribution.

Such partitioning may not exist or be known. E.g., for graphs:

Split the set of nodes in two and claim that each of the resulting
induced subgraphs is a sample from the original distribution:

what do you do with edges crossing the two sets?
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How selective shall we be?

Let Z, < H be the set of a-significant hypotheses.

When selecting H’, we may get rid of some «a-significant ones:

Zon (H\H) # &.

Does the power increases because the corrected significance
threshold increases?
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How selective shall we be?

Let Z, < H be the set of a-significant hypotheses.

When selecting H’, we may get rid of some «a-significant ones:
Zon (H\H') # .
Does the power increases because the corrected significance

threshold increases? Unclear!

One can build examples where power 1, |, or =.
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Take-away message

Being more or less selective in choosing H' has a complicated effect
on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that
holdout may remove a-significant hypotheses from .

OTOH, holdout is a simple natural procedure, and
it generally leads to higher power because
most discarded hypotheses are not a-significant.
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Take-away message

Being more or less selective in choosing H' has a complicated effect
on power that cannot be clearly evaluated a priori.

This downside of holdout is due to the fact that

holdout may remove a-significant hypotheses from .

OTOH, holdout is a simple natural procedure, and
it generally leads to higher power because

most discarded hypotheses are not a-significant.

Coming up: how to discard only non-a-significant hypotheses.
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A breakthrough [Tarone 1990]

The statistic of Fisher's exact test is discrete
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Example Consider a dataset with ny =5, ny = 10, o(S5) =5
(=n=15n—0(5) = 10).
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A breakthrough [Tarone 1990]

The statistic of Fisher's exact test is discrete
= there is a minimum attainable p-value for a pattern S.

Example Consider a dataset with ny =5, ny = 10, o(S5) =5
(=n=15n—0(5) = 10).

Smallest p-value for S? When ¢1(S) =5

Sct; | SEt; | Rowm.
g(tl) =C 5 0 5
f(l‘,i) = C9 0 10 10
Col. m. 5 10 15

minimum attainable p-value = 3 x 1074
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A breakthrough [Tarone 1990] (2)

The statistic of Fisher's exact test is discrete

= there is a minimum attainable p-value for a pattern S.

Sct; | St Row m.
g(ti) =C 0'1(8) ny — 0'1(8) nq
g(tl) = Cp 0’0(8) no — 0'0(8) no
Col. m. a(S) n—o(S) n

Let pI'(0(S), x) be the statistic for pattern S with support o(S)

assuming 01(S) = x.
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The statistic of Fisher's exact test is discrete
= there is a minimum attainable p-value for a pattern S.

Sct; | St Row m.
g(ti) =C 0'1(8) ny — 0'1(8) nq
g(tl) = Cp 0’0(8) no — 0'0(8) no
Col. m. a(S) n—o(S) n

Let pI'(0(S), x) be the statistic for pattern S with support o(S)
assuming 01(S) = x.

It must be max{0,n1 — (n — o(S))} < x < min{c(S), n1}
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A breakthrough [Tarone 1990] (2)

The statistic of Fisher's exact test is discrete
= there is a minimum attainable p-value for a pattern S.

Sct; | St Row m.
g(ti) =C 0'1(8) ny — 0'1(8) nq
g(tl) = Cp 0’0(8) no — 0'0(8) no
Col. m. a(S) n—o(S) n

Let pI'(0(S), x) be the statistic for pattern S with support o(S)
assuming 01(S) = x.

It must be max{0,n1 — (n — o(S))} < x < min{c(S), n1}
= the range of p’ (0(8S), ) depends only on o(S) (n, n; are fixed)
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A breakthrough [Tarone 1990] (3)

Then the minimum attainable p-value for S is:

P(0(S)) = min " (o(S), )

max{0,n;—(n—0o(S))}<x<min{c(S),n1}
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A breakthrough [Tarone 1990] (3)

Then the minimum attainable p-value for S is:

P(0(S)) = min p"(0(8),x)

max{0,n;—(n—0o(S))}<x<min{c(S),n1}

Tarone's result: when testing each hypothesis with significance level
0, then the hypotheses that will certainly have p-value
greater than ) do not need to be counted when using
Bonferroni’s correction! ©
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A breakthrough [Tarone 1990] (4)

S cannot be significant with significance level ¢ if

P(o(S)) >0
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A breakthrough [Tarone 1990] (4)

S cannot be significant with significance level ¢ if
Y(o(S)) > § = S is untestable.
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A breakthrough [Tarone 1990] (4)

S cannot be significant with significance level ¢ if
Y(o(S)) > § = S is untestable.

Set of testable hypotheses (for significance level ¢):
T(6) ={S[v(a(5)) < 6}

All the others do not really matter, and should not be counted
when applying the Bonferroni correction to control for the FWER.
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Example: market basket analysis

! |

v [@®
¢

S = {orange, tomato, broccoli}

q
¢ P v
"¢

(0’

@
¢ €€ ¢ ¢
2= 2R

<

(2> Beie i) fo ta 3|
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Example: market basket analysis

R NP R

2 : ¢ ‘g S = {orange, tomato, broccoli}

2 %y |© minimum attainable p-value

) [ @@® Y(S)= _ min _ {p"(e(S),2)}
g A dlov <z<min{o(S),n;}

Bllil=[v Y

&) [-] [ wlel¥
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Example: market basket analysis

ARECEOER

2 : ¢ “g S = {orange, tomato, broccoli}

2) = ‘: ® minimum attainable p-value

T -h e v©) -, min G 0(S)0)
% X NP SO obtained for = 4: P(4) = 0.014.

8 - olelv,
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Example: market basket analysis

| =] SO )

g :‘- g 0; S = {orange, tomato, broccoli}

) =MV @ minimum attainable p-value

) [ WeF v(o(S) = o<x<mrﬁlli{?(5),nl}{pF<0(S)’x)}
% : N SOV Gbtained for o = 4: Y(4) = 0.014.

8l [-] | [Slel¥

= if the significance level used to test each hypothesis is § = 0.01,
you do not need to count § among the hypotheses!
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Tarone's Improved Bonferroni correction

Set of testable hypotheses:
T(0) ={S | ¥(0(S)) < 0}
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Tarone's Improved Bonferroni correction

Set of testable hypotheses:
T(0) ={S | ¥(0(S)) < 0}

Rejection rule:
Given a statistical level o € (0,1), let § < /| T (5)|: reject H, iff
p < 6 = § is significant!
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Tarone's Improved Bonferroni correction

Set of testable hypotheses:
T(0) ={S | ¥(0(S)) < 0}

Rejection rule:
Given a statistical level o € (0,1), let § < /| T (5)|: reject H, iff

p < 6 = § is significant!

Theorem

The FWER is < «.
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Tarone's Improved Bonferroni correction

Set of testable hypotheses:

T(0) ={S [ ¥(a(5)) < 6}

Rejection rule:
Given a statistical level o € (0,1), let § < /| T (5)|: reject H, iff
p < 6 = § is significant!

Theorem

The FWER is < «.

Idea: find 6* = max{d : 6 < a/|T(9)|}!
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Now, like always, is a good time for questions on:

Multiple hypothesis testing

Bonferroni Correction

Tarone's approach to selecting hypotheses
Minimal attainable p-value

Anything else =)
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Now, like always, is a good time for questions on:

Multiple hypothesis testing

Bonferroni Correction

Tarone's approach to selecting hypotheses
Minimal attainable p-value

Anything else =)

Let's take a 5—10 minutes break.
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2.1 LAMP: Tarone’s method for Significant Pattern Mining
2.2 SPuManTE: relaxing conditional assumptions

2.3 Permutation Testing

2.4 WY Permutation Testing

3. Recent developments and advanced topics
4. Final Remarks

56/101



Selecting testable patterns

Minimum attainable p-value ¥(o(S)) of a pattern S: select
patterns to test from H.
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Selecting testable patterns

Minimum attainable p-value ¥(o(S)) of a pattern S: select
patterns to test from H.

Naive approach: compute ¥ (c(S)) for all S € H, find §*
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Selecting testable patterns

Minimum attainable p-value ¥(o(S)) of a pattern S: select
patterns to test from H.

Naive approach: compute ¥ (c(S)) for all S € H, find §*

Not possible to enumerate all S € H...
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Minimum attainable p-value 1(o(S)) of a pattern S is a function
of its support o(S) in the data.
Low (and very high) support o(S) — large ¥ (o(S))

LA, Terada, et. al. Statistical significance of combinatorial regulations. PNAS, 2013.
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Minimum attainable p-value 1(o(S)) of a pattern S is a function
of its support o(S) in the data.

Low (and very high) support o(S) — large ¥ (o(S))

Minimum attainable P-value

% v
‘\\ ---- Pearson's x? test __4"

-2 N Fisher!s exact test
—~
—~ 4
o) o
(/:) -6 Y Pt
Sy D 5

»

-8 LY ¢
= o / n = 60, n1 = 30.
~— -10 hY v

=) \ s
— N /

op 12 . _ ) )
o) \I/ (from F. Llinares-Lépez, D. Roqueiro, ISMB'18 Tutorial.)
— _ v

-16

0 ni n
o(S)

LA, Terada, et. al. Statistical significance of combinatorial regulations. PNAS, 2013.
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Minimum attainable p-value 1(o(S)) of a pattern S is a function
of its support o(S) in the data.

Low (and very high) support o(S) — large ¥ (o(S))

Minimum attainable P-value

& ¢

‘\\ ---- Pearson's x? test __/'
-2 N Fisher!s exact test
—~
—~ 4
o) o
(/:) -6 Y Pt
~ . /
5 N\ ;
SN— -
= o / n = 60, n1 = 30.
~— -10 hY v
=} \ s
— N /
op 12 . _ ) )
o) \I/ (from F. Llinares-Lépez, D. Roqueiro, ISMB'18 Tutorial.)
— _ v
-16
0 n n
o(S)

Intuition of LAMP!: connection betw. testable and frequent patterns!

LA, Terada, et. al. Statistical significance of combinatorial regulations. PNAS, 2013.
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Frequent Pattern Mining

Frequent Pattern Mining: given D, compute the set of frequent
patterns FP(D,H,0) < H w.r.t. support 6, that is

FP(D,H,0) :={SeH:o(S)=0}.
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Frequent Pattern Mining

Frequent Pattern Mining: given D, compute the set of frequent
patterns FP(D,H,0) < H w.r.t. support 6, that is

FP(D,H,0) :={SeH:0(S)=0}.

Typical approach: Explore the search tree of H, pruning subtrees
with support < € (monotonicity of support)
{ )
0 L
, Oy & @ o
N

< N\ ~ T
{OA) (O {O%% 1+ -+ (A YD

OAD (OAY ~-~ (Omye

N

A
OADY 59/101



Frequent Pattern Mining

Monotonicity of patterns’ support

Theorem

Let S be an itemset. Then it holds o(S’) <

R Y

A v T o9
2 L ¢
2] [*[vL] e
2l (-] d0¢
2 . oo
A v /8L

8 |- o

Valid for many other patterns (e.g., subgraphs, sequential patterns, subgroups, ...

Example:

S={%0,0,9
o(§)=2<0(S)

o(S) forall §'=2S.

},

= {@}

)
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LAMP:

logyg (¥(0(5)))

(x) =

Minimum attainable P-value

---- Pearson's x? test
-=-- Fisher's exact test

&
o+
D Dl
‘\ l.'
S 5
N P
R <
.
NS b
) s
", ;7
N\ <0
o 77
\ s .
b\ ’/
N \\ g
\ i
VS
Sy
! 1
\
LK
\/’
+
n
o(S)

monotone minimum achievable p-value function ¢ (-):

,if o <my
, othw.
2 Minimum attainable P-value
-=-- Pearson's x? test
3 -=-- Fisher's exact test
~
—~ -4
—
2 -6 '*:n‘
~— LY
\b/ -8 .\"\n |
= "\ monotone!
N—-10 .
=) A
b‘E -12 Y
S AR e DR
-16 \“‘
n1 n
a(S)
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We obtain the equivalence:
T()(0)) = FP(D,H,0) = {SeH:o(S)=0}).
Thus: A
[ T(W(0) = [FP(D,H,0)|.
We can use |FFP(D,H,0)| to find

0" = max{d : 0|7 (0)| < a}.
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LAMP algorithm: compute * = max{d : 4|7 (9)| < o}
enumerating Frequent ltemsets.
{ }

91 Oy Ay 2y o

{OAY (O (O - (A I -+

Performs multiple Frequent Pattern Mining instances ﬁA\D}(OA*} ©e oo

(decreasing values of ) to evaluate |FP(D,H,0)|. |©AT%

Find minimum 6 such that it holds L2

a/\FP(D,H,9)| > 12)(9) 92, ©r Ay @ oo
KT OB ©f - AD B

OAD (OAYD ~-~ {OmYe

(imgs. from LAMP paper)
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LAMP: Experimental Results

(imgs. from LAMP)

0.05
*LAMP

0.04 —¥=Bonferroni
c0.03
=
L 0.02 {
001 =]

0

1 2 3 4 102

Max itemsets cardinality

Estimated FWER (a = 0.05) of LAMP vs Bonferroni correction.
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{3 {1}

0, M\ 0, g S

Oy Ay @, 0y (A @ oo

<\ -~
{OANOOYIOYY -+ (A A --- {OA) (O} {OF% 1+ -+ (AL (AYD
ﬁA\D}{OAﬂ’) o e QA O -~ {oO¥e
©oANe .- : oADY

For 05 we count again all patterns
already counted for 6; > 65!
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{3 {1}

01 M\ 0, ]

Oy Ay @, 0y (A @ oo

<\ -~
{OANOOYIOYY -+ (A A --- {OA) (O} {OF% 1+ -+ (AL (AYD
ﬁA\D}{OAﬂ’) o e QA O -~ {oO¥e
©oANe .- : oADY

For 05 we count again all patterns
already counted for 6; > 65!

Is it possible to explore patterns only once?
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SupportIncrease?: LAMP with only one Depth-First (DF)
exploration of H.

9 %\\ start with 6 = 1; increase ¢ while exploring
1 {0} HA S

if the curr. num. of frequent patterns > /4)(6)

< N\ ~
(OA} (O {O¥%) 1 -+ (ADD (AYY

/\ {3
: ‘92

o (OANOOY(OY -+ (A} AV - -
(imgs. from LAMP) ﬁA\D}{OA*} .. Oy
(OADY

2Minato, S. I, et al. A fast method of statistical assessment for combinatorial hypotheses based on
frequent itemset enumeration. ECML-PKDD 2014.
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Mining Significant Subgraphs*
Graph-structured samples S1 S

A A s =9

® |1 1 o ¢

s 1 1 o Ss :..

@
1 1 0
0 ol |1 Goal: find induced subgraphs
that are significantly enriched
0 0| |1
in a class of labelled graphs

0 0| |0
0 0| |1 (imgs. from 3)

3F. Llinares-Lépez, D. Roqueiro, Significant Pattern Mining for Biomarker Discovery, ISMB'18 Tutorial.
*M. Sugiyama, F. Llinares-Lépez, N. Kasenburg, K.M. Borgwardt. Significant subgraph mining with
multiple testing correction. ICDM 2015. 67 /101
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Relaxing conditional assumptions

Sct; | St Row m. _
((t:) =1 | 01(8) | —01(S) [ ma (gray = fixed,
((t:) = co | 00(S) | mo —00(S) | ng yellow = random)
Col. m. J(S) n—o(S) |n

Recap: Assumptions of Fisher's test: all marginals of all the tested
contingency tables are fixed by design of the experiment.
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Relaxing conditional assumptions

f(tl) = C 0'1(8) ny — 0'1(8) T
é(tz) = Cp 0'0<8) ng — 0'0(8) Un)
Col. m. [a(S) [n—0a(S) |n

(gray = fixed,
yellow = random)

Recap: Assumptions of Fisher's test: all marginals of all the tested
contingency tables are fixed by design of the experiment.

In many cases, only ng,ni, and n are fixed, while o(S) depends on
the data — Unconditional Test!
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Relaxing conditional assumptions

Sct; | St Row m. _
((t:) =1 | 01(8) | —01(S) [ ma (gray = fixed,
((t:) = co | 00(S) | mo —00(S) | ng yellow = random)
Col. m. J(S) n—o(S) |n

Recap: Assumptions of Fisher's test: all marginals of all the tested
contingency tables are fixed by design of the experiment.

In many cases, only ng,ni, and n are fixed, while o(S) depends on
the data — Unconditional Test!
Not used in practice, mainly for computational reasons. ..
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Recap: Barnard's Exact Test

Sct, | St Row m.
(t) =c1 | oi(S) | n1—a1(S) | ma (gray = fixed,
£(ti) = co | a0(S) | no — 00(S) | no yellow = random)
Col. m. o(S) | n—a(S

) n
Nuisance variables: 7s; = P(“S < t;" | “l(t;) = ¢;"),
c t;

NH: 750 = 151 = s = P("S )

70/101



Recap: Barnard's Exact Test

Sct, | St Row m.
(t) =c1 | oi(S) | n1—a1(S) | ma (gray = fixed,
{(ti) = co | 00(S) | mo —00(S) | mo yellow = random)
Col. m. a(S) | n—a(S) n

Nuisance variables: w5, = P("S < t;" | “U(t;) = ¢;"),
NH: mso = 751 = 1s = P("S = t;").

Let Cs = observed contingency table for S.

70/101



Recap: Barnard's Exact Test

Sct, | St Row m.
(t) =c1 | oi(S) | n1—a1(S) | ma (gray = fixed,
{(ti) = co | 00(S) | mo —00(S) | mo yellow = random)
Col. m. a(S) | n—a(S) n

Nuisance variables: w5 ; = P("S < t;" | "0(t;) = ¢;"),
NH: TS0 = Ts,1 = TS = P(“S - tl'”).
Let Cs = observed contingency table for S.

P(C | m) = prob. of a table C assuming NH and 75 = 7
T(Cs,m) = {more extreme cont. tables of Cgs}
¢(Cs,m)= >, P(C|m)

CGT(CS 71')

p-value: ps = max {¢(Cs, )}
7e0,1] 70/101



Recap: Barnard's Exact Test

Sct, | St Row m.
(t) =c1 | oi(S) | n1—a1(S) | ma (gray = fixed,
{(ti) = co | 00(S) | mo —00(S) | mo yellow = random)
Col. m. a(S) | n—a(S) n

Nuisance variables: 7s; = P("“S < t;" | "l(t;) = ¢;"),
NH: TS0 = Ts,1 = TS = P(“S - tl'”).
Let Cs = observed contingency table for S.

P(C | m) = prob. of a table C assuming NH and 75 = 7
T(Cs,m) = {more extreme cont. tables of Cgs}
¢(Cs,m)= >, P(C|m)

CGT(CS 71')

p-value: ps = max {¢(Cs,m)} — hard to compute!
mef0,1] 70/101



Efficient Unconditional Testing: SPuManTE®

1) Computes confidence intervals C;(S) for ms

°L. Pellegrina, M. Riondato, and F. Vandin. “SPuManTE: Significant Pattern Mining with
Unconditional Testing”. KDD 2019.
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Efficient Unconditional Testing: SPuManTE®

1) Computes confidence intervals C;(S) for ws
Compute a probabilistic (high prob.) upper bound to

03(55)'

U

sup
Set,je{0,1}

mSj

(note: ¢,(S)/n; is observed from D, ws ; is unknown)

How? Upper bound® to Rademacher Complexity of .

®M. Riondato and E. Upfal. Mining frequent itemsets through progressive sampling with
Rademacher averages. KDD 2015.

®L. Pellegrina, M. Riondato, and F. Vandin. “SPuManTE: Significant Pattern Mining with
Unconditional Testing”. KDD 2019.
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Efficient Unconditional Testing: SPuManTE

2) p-value pg according to confidence intervals:

{o Lif Co(S) N C1(S) = &
PS7 max{6(Cs, 1), m € Co(S) A C1(S)} . othw.

Flag S as significant if pg < 9.
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Efficient Unconditional Testing: SPuManTE

p-value pg according to confidence intervals:

0 , if CO(S) M 01(3) = @

PS™) max{6(Cs, 1), 7€ C(S)} . othw.

p-value pg is still expensive to compute in second case!

L. Pellegrina, M. Riondato, and F. Vandin. “SPuManTE: Significant Pattern Mining with
Unconditional Testing”. KDD 2019.
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Efficient Unconditional Testing: SPuManTE

p-value pg according to confidence intervals:

0 , if 00(3) M 01(3) = @

ps =
max{¢p(Cs, ), 7€ C(S)} , othw.
p-value pg is still expensive to compute in second case!

3) Upper and Lower bounds to pg, and efficient algorithm for
computation of ¢(-)

More in the paper’ :)

L. Pellegrina, M. Riondato, and F. Vandin. “SPuManTE: Significant Pattern Mining with
Unconditional Testing”. KDD 2019.
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Permutation Testing

Main idea: estimate the null distribution by randomly perturbing
the observed data.
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Permutation Testing

Main idea: estimate the null distribution by randomly perturbing
the observed data.

Pro: takes advantage of the dependence structure of the hypothesis

Cons: computationally expensive, assumptions
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Permutation Testing: Setting

Dy: observed dataset from some generative process G.

E.g., a transactional dataset
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Permutation Testing: Setting

Dy: observed dataset from some generative process G.

E.g., a transactional dataset

To = A(Dy) € R: output of analysis algorithm A on Dy

E.g., the number of frequent itemsets w.r.t. min. freq. thresh. 6

76/101



Permutation Testing: Setting

Dy: observed dataset from some generative process G.

E.g., a transactional dataset
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Permutation Testing: Setting

Dy: observed dataset from some generative process G.

E.g., a transactional dataset

To = A(Dy) € R: output of analysis algorithm A on Dy

E.g., the number of frequent itemsets w.r.t. min. freq. thresh. 6

P: a set of properties of Dy satisfied by all D € G

E.g., the rows and columns totals

QUESTION: Is Tj surprising? Or just a “consequence’ of P?
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Null hypothesis
Null hypothesis Hy: T is fully explained by P.
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Null hypothesis
Null hypothesis Hy: T is fully explained by P.
l.e., a value of Tj is “typical” for datasets from G.

l.e., it is very likely to observe a value A(D) = T in
a dataset D taken from G.
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77/101



Null hypothesis
Null hypothesis Hy: T is fully explained by P.

l.e., a value of Tj is “typical” for datasets from G.

l.e., it is very likely to observe a value A(D) = T in
a dataset D taken from G.

Ideally:

Q(T()) = DPiI‘g (A(D) = T()) . Reject H if Q(Tg) < 0.

Very often: no closed form for Q(Tp)!
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Null hypothesis
Null hypothesis Hy: T is fully explained by P.

l.e., a value of Tj is “typical” for datasets from G.

l.e., it is very likely to observe a value A(D) = T in
a dataset D taken from G.

Ideally:

Q(T()) = DPiI‘g (A(D) = T()) . Reject H if Q(T()) < 0.

Very often: no closed form for Q(Tp)!

Instead: empirical estimate Q(Tp) of Q(7}) using samples from G

77/101



Permutation Testing

1. Generate D = {D,...,D,,} independent uniform samples taken
from §.
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Permutation Testing

1. Generate D = {D,...,D,,} independent uniform samples taken
from §.

2. Run A on each D; € D to obtain T = {T1,...,T},}.
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Permutation Testing

1. Generate D = {D,...,D,,} independent uniform samples taken
from §.

2. Run A on each D; € D to obtain T = {T1,...,T},}.

3. Compute the empirical p-value Q(T):

o T T 4
Q) = m 4+ 1
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Permutation Testing

1. Generate D = {D,...,D,,} independent uniform samples taken
from §.

2. Run A on each D; € D to obtain T = {T1,...,T},}.

3. Compute the empirical p-value Q(T):

o T T 4
Q) = m 4+ 1

4. If Q(Ty) < 0, reject Hy.

78/101



Generating uniform samples

1. Assumption: there exists a perturbation operation
¢:G—>G

s.t. for any D', D" € G, D’ can be obtained by repeatedly applying
¢ to D",

79/101



Generating uniform samples

1. Assumption: there exists a perturbation operation
¢:G—>G

s.t. for any D', D" € G, D’ can be obtained by repeatedly applying
¢ to D",

2. We need to derive sufficient number of perturbations to obtain
an independent and uniform sample from G
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Example

Dy: observed dataset (binary matrix).
rows: transactions: columns: items

R P O R
O O = O
O = = =
= O O

To = A(Dy) = number of frequent itemsets w.r.t. frequency
threshold 0
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Example

3132
Dy: observed dataset (binary matrix). Lol 113
. . 01102
rows: transactions: columns: items
1 01 0|2
1 00 1|2

To = A(Dy) = number of frequent itemsets w.r.t. frequency
threshold 6

P = the rows and columns totals
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Example

3132
Dy: observed dataset (binary matrix). Lol 113
. . 01102
rows: transactions: columns: items
1 01 0|2
1 00 1|2

To = A(Dy) = number of frequent itemsets w.r.t. frequency
threshold 6

P = the rows and columns totals

QUESTION: Is Ty a “consequence” of P?
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Example: perturbation for rows and columns sums
1. Take two rows v and v and two columns A and B of D,
such that u(A) = v(B) =1 and u(B) = v(A) = 0;

2. Change the rows so that
u(B) =v(A) =1and u(A) =v(B) =0

Fig. 1. A swap in a 0-1 matrix.

From Gionis et al., Assessing Data Mining Results via Swap Randomization, ACM TKDD, 2007.
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Advantages and disadvantages of permutation testing

Conceptually very natural ©

Requires a perturbation operation ¢ for P @

Computationally very expensive:

m times: sample generation + running A G
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Westfall-Young® (WY) Permutation Testing
Perturbation: random shuffle of the labels (repeated m times).

Original Data Random Permutations

W
1 2 3 4 = j

Compare p-values from original data with random labels.

2%

1 o4

3

( ]
¢ e

‘0’

EEEEIEEEES

8P. H. Westfall and S. S. Young, Resampling-Based Multiple Testing: Examples and Methods for
p-Value Adjustment. Wiley-Interscience, 1993. 84/101



pﬂnn = minimum p-value (over H) on j-th random label

m

1 .
Estimated FW ER for sign. thr. 6: FWER(S) = — > 1 [pj < 5]

m - min
i=1
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pﬂnn = minimum p-value (over H) on j-th random label

m

1 .
Estimated FIVER for sign. thr. §: FWER(S) = — 1|y, <]
mia
pznin
Compute §* = max {6 : FWFER() < a} 5
— a-quantile of {p/ . } ]
1 |am] m
J
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pﬂnn = minimum p-value (over H) on j-th random label

— 1 & :
Estimated FIVER for sign. thr. §: FWER(S) = — 1|y, <]
mia
pznin
Compute §* = max {6 : FWFER() < a} 5
— a-quantile of {p/ . } ]
1 |am] m
J

Output {S :ps < 07}.
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pﬂnn = minimum p-value (over H) on j-th random label

m

1 .
Estimated FW ER for sign. thr. 0: FWER(S) = —Z 1 [pfmn < (5]
mia
pi‘nin
Compute §* = max {6 : FWFER() < a} 5
— a-quantile of {p/ . } ]
1 |am] m
J

Output {S :ps < 07}.

Problem: exhaustive enumeration of H to compute pﬂnm.
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How to compute pfmn efficiently?
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How to compute pfnin efficiently?

FASTWY?: Intuition:

~

U(S) = pl. = Sis untestable = cannot improve p’ !

°A. Terada, K. Tsuda, and J. Sese. Fast westfall-young permutation procedure for combinatorial
regulation discovery. |ICBB, 2013.
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(improved version® of) FASTWY: computes efficiently pznin with a
branch-and-bound search over H, pruning subtrees with (-):

. start with 8 = 1 and piﬂin = 1; explore

L atterns with DF exploration, updatin J :

& @ oo . . L .
increase ¢ while exploring if p’ . < ()

(04} o) (O I-- {AD} {Aik}

oAD <OA$%>¥<O Oy \ ﬂ\

/\ 2
©AEX ) (OANOOYIOY -+ (ADD (AR -+

(imgs. from LAMP) ﬁA\D}{OAﬂn ... OO
(OADYY

10T Aika, H. Kim, and J. Sese. High-speed westfall-young permutation procedure for
genome-wide association studies, ACM-BCB 2015.
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Issues of FASTWY:
1) repeat the procedure m times (m =~ 103-10* for a ~ 0.05);

2) for some j, the min. p-value pfnin is large — large space of
testable patterns! (small freq. threshold 6)

J
Dhin 0
. Many frequent patterns!
5* o ° ® e . T
] j g

1 |am| m . -
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WYlight

WYlight!!: Intuition: to find 6* we only need to compute

. J
exactly the lower a-quantile of {p/ . }”"

j
p min

QJ

j=1-

WYlight: Less work!

LA

.. FASTWY
)j
J

1 |lam|

1 |lam] m

F Llinares-Lépez, M. Sugiyama, L. Papaxanthos, and K. Borgwardt. Fast and memory-efficient
significant pattern mining via permutation testing, KDD 2015.
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WYlight

WYlight algorithm: one DF exploration of H processing all m
permutations at once.

start with § = 1 and pfnin = 1,Vy; explore
) patterns with DF exploration, updating
0, {0«7\~ {pfnin}}nzl; increase 0 while exploring

@ oo ‘ R
if a-quant. of {p’ . T < ()

N
(04} o) (O I-- {AD} {Aﬂr}

OADD <OA¢%}¥<O Ove \A ﬂ\

o -ty
o {OA} OOY(Op - (ADD A -+
(imgs. from LAMP) ©AD ONY --- (OO0
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Too many results!

Motivation: for many
datasets, impractically large
set of results (SP(0.05)) are
found even when controlling
FWER < 0.05:

dataset |D| ‘ |11 | avg | ni/n ‘ SP(0.05) |
svmguide3(L) 1,243 44 | 219 0.23 36,736
chess(U) 3,196 75 37 0.05 > 107
mushroom(L) 8,124 118 | 22 0.48 71,945
phishing(L) 11,055 813 | 43 | 0.44 > 107
breast cancer(L) 12,773 1,129 | 6.7 0.09 6
a9a(L) 32,561 247 | 139 0.24 348,611
pumb-star(U) 49,046 7117 | 50.5 | 0.44 > 107
bms-web1(U) 58,136 60,978 | 2.51 0.03 704,685
connect(U) 67,557 129 | 43 0.49 > 108
bms-web2(U) 77,158 | 330,285 | 4.59 0.04 289,012
retail(U) 88,162 16,470 | 10.3 0.47 3,071
ijenn1(L) 91,701 44 13 0.10 607,373
T10I14D100K(U) 100,000 870 | 10.1 0.08 3,819
T40110D100K(U) 100,000 942 | 39.6 0.28 5,986,439
codrna(L) 271,617 16 8 0.33 4,088
accidents(U) 340,183 467 | 33.8 | 0.49 > 107
bms-pos(U) 515,597 1,656 6.5 0.40 | 26,366,131
covtype(L) 581,012 64 | 119 | 049 542,365
susy(U) 5,000,000 190 | 43 | 048 > 107
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What if we want (quickly!) only the top-k significant patterns,
with same guarantees on FW ER?

12|  Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation
testing. KDD 2018, DAMI 2020.
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What if we want (quickly!) only the top-k significant patterns,
with same guarantees on FW ER?

p¥ = k-th smallest p—value of SeH,
5* = max {x FWER(x }
0 = min {pk,é*}.

12|  Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation
testing. KDD 2018, DAMI 2020.
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What if we want (quickly!) only the top-k significant patterns,

with same guarantees on FW ER?

= k-th smallest p—value of SeH,
5* = max {x FWER(x }
0 = min {pk,é*}.

Set of top-k£ significant patterns:

TKSP(D,H,a. k) :={S : ps

N
|
——

12|  Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation
testing. KDD 2018, DAMI 2020.
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What if we want (quickly!) only the top-k significant patterns,

with same guarantees on FW ER?

= k-th smallest p—value of SeH,
5* = max {x FWER(x }
0 = min {pk,é*}.

Set of top-k£ significant patterns:
TKSP(D,H,a, k) = {S ps < 3}.

Computed efficiently with TopKWY!2!

12|  Pellegrina and F. Vandin. Efficient mining of the most significant patterns with permutation
testing. KDD 2018, DAMI 2020.

92/101



TopKWY
Intuition: to compute TKSP(D,H, a, k) we only need to

compute exactly the values of the set {pmm} that are < 0.
j=

J
Pryin 0 TopKWY: Even less work!
.' : // WY1light

FASTWY
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TopKWY

Algorithm: Best First (BF) exploration of H to compute 0.
(Approach similar to TopKMiner (Pietracaprina and Vandin, 2007) for top-k freq. itemsets).

start with 8 = 1 and pﬁnin = 1,Vj; explore
O patterns with BF exploration, updating

6, {0}47\- {pjmm} * , and p¥; increase 0 while exploring

(A T=piye . R
if min {a—quant. of {p! .. s pk} < (0)

N =
(OAY (O (O I+ -+ (AL (AYY

<OA/|:|>>A71(} . (OoOYe \ %f\

{OA} OOYIO¥ --- (AN O -

(imgs. from LAMP) OAD} OAY -+ {OOYe
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TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns.

Theoiem X 3

Let § = min{p*, &}, and 0* = max{z : ¥(x) > 6}. ~
TopKWY will process only the set F'P(D,H,0*) = T(9).
Instead, the DF search always explores a super-set of T (9).

131 Pellegrina, F. Vandin, Efficient mining of the most significant patterns with permutation
testing. KDD 2018, DAMI 2020.
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TopKWY: Guarantees

1) BF search: guarantees on the set of explored patterns.

Theoiem X 3

Let § = min{p*, &}, and 0* = max{z : ¥(x) > 6}. ~
TopKWY will process only the set F'P(D,H,0*) = T(9).
Instead, the DF search always explores a super-set of T (9).

2) Improved bounds to skip the processing of the permutations for
many patterns.

(More details on the paper'® ©)

131 Pellegrina, F. Vandin, Efficient mining of the most significant patterns with permutation
testing. KDD 2018, DAMI 2020.
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TopKWY: Running time

= WY light

W TopKWY(k=10°)
W TopKWY(k

m TopKWY(k=103)
B TopKWY(k

=10)

B TopKWY(k
m TopKWY(k

=109)

=10%)

10?)

T T T T T T 1
~ © wn < ) o~ - o

o o o o o o o o
- — — — — — — —

(s) @wiL uolndax3
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Outline

1. Introduction and Theoretical Foundations

2. Mining Statistically-Sound Patterns

3. Recent developments and advanced topics
4. Final Remarks
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Recent developments and advanced topics

1. Controlling the FDR
2. Covariate-adaptive methods

3. Relaxing all conditional assumptions

More details and references at
http://rionda.to/statdmtut
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http://rionda.to/statdmtut
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4. Final Remarks
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Final Remarks

Knowledge Discovery should be based on hypothesis testing:

the data is never the whole universe.

Lots of room for research: we scratched the surface

Statistics: tests with higher power, fewer assumptions

CS: scalability (wrt many dimensions) is still an issue.

Balance theory and practice
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Hypothesis Testing and
Statistically-sound Pattern Mining

Tutorial — SDM'21
Leonardo Pellegrina!  Matteo Riondato?  Fabio Vandin?

!Dept. of Information Engineering, University of Padova (IT)

2Dept. of Computer Science, Amherst College (USA)

Tutorial webpage: http://rionda.to/statdmtut
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What about controlling the FDR?

Let V' the number of false discoveries (rejected null hypotheses).
Family-Wise Error Rate (FWER): Pr[V > 1].
Let R the number of discoveries (i.e., rejected hypotheses).

False Discovery Rate (FDR): E[V/R] (assuming V' /R = 0 when
R =0).
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What about controlling the FDR?

Let V' the number of false discoveries (rejected null hypotheses).
Family-Wise Error Rate (FWER): Pr[V > 1].
Let R the number of discoveries (i.e., rejected hypotheses).

False Discovery Rate (FDR): E[V/R] (assuming V' /R = 0 when
R =0).

Significant pattern mining while controlling the FDR?
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What about controlling the FDR? (2)

Some methods for scenario where significance # association with a
class label:
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What about controlling the FDR? (2)

Some methods for scenario where significance # association with a
class label:
» significance = deviation from expectation when items place
independently in transactions (with same frequency as in

dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]
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What about controlling the FDR? (2)

Some methods for scenario where significance # association with a
class label:

» significance = deviation from expectation when items place
independently in transactions (with same frequency as in
dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]

> statistical emerging patterns: given a threshold a € (0, 1),
probability class label is ¢; when pattern S is present is > a
[Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD
2017.]
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What about controlling the FDR? (2)

Some methods for scenario where significance # association with a
class label:

» significance = deviation from expectation when items place
independently in transactions (with same frequency as in
dataset D) [Kirsch, Mitzenmacher, Pietracaprina, Pucci, Upfal,
Vandin. Journal of the ACM 2012]

> statistical emerging patterns: given a threshold a € (0, 1),
probability class label is ¢; when pattern S is present is > a
[Komiyama, Ishihata, Arimura, Nishibayashi, Minato. KDD
2017.]

Not a solved problem!
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Using additional information

Sometimes there are additional measures (covariates) that provide
information on whether a pattern can be significant.
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Using additional information

Sometimes there are additional measures (covariates) that provide
information on whether a pattern can be significant.

Example: the support o(S) of S has an impact on its minimum
achivable p-value for Fisher's exact test
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Using additional information

Sometimes there are additional measures (covariates) that provide
information on whether a pattern can be significant.

Example: the support o(S) of S has an impact on its minimum
achivable p-value for Fisher's exact test

The covariate can be used to weight hypotheses/patterns or,
equivalently, use different correction thresholds for False Discovery
Rate (FDR) based on the covariate
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Independent Hypothesis Weighting (IHW)

%1gnatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in
genome-scale multiple testing. Nature methods 13.7 (2016): 577.
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Independent Hypothesis Weighting (IHW)

Covariate

BH
|

—log,4(P-value)

4| gnatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in
genome-scale multiple testing. Nature methods 13.7 (2016): 577.
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Independent Hypothesis Weighting (IHW)

1,800 IHW
2 1,600 - BH
s
© 8
g A 1,400
(@)
o
BH 1,200 - T T 1
2 0.06 0.08 0.10
Nominal o

—log,4(P-value)

1*|gnatiadis, Nikolaos, et al. Data-driven hypothesis weighting increases detection power in
genome-scale multiple testing. Nature methods 13.7 (2016): 577.
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No conditioning?

S

IN

ti S $ t; Row m.
E(tz) =C | 01 8) ny — 0'1(8) T
E(Q) = 0'0(8) ng — 0'0(8) no
Col. m. |a(S) [n—0a(S) |n

/N

Fisher's test: conditioning on both row and column totals

Barnard's test: conditioning only on row totals.
Removing the conditioning on the columns was really controversial.

It makes sense in a pattern mining setting (and others).
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No conditioning?

Sct,|S<Et; Row m.
E(tz) = 0'1(5) ny — 0'1(8) T
E(@) = 0'0(8) ng — 0'0(8) no
Col. m. |a(S) |n—0a(S) | n

Fisher's test: conditioning on both row and column totals
Barnard's test: conditioning only on row totals.
Removing the conditioning on the columns was really controversial.
It makes sense in a pattern mining setting (and others).
Q: Shall we stop conditioning on the row totals?
In general, removing assumptions is a blessed goal.
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Why no conditioning? (2)

Conditioning is bad, even when it approximately preserve the
likelihood.

It destroys the repeated-sampling (frequentist) interpretation of
p-value, because it reduces the sample space:

fewer datasets are considered possible,
often too few to be realistic.
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Why no conditioning? (1)

Single-experiment. removing row conditioning is almost unnatural.

No one does it — no controversy! ©
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Why no conditioning? (1)

Single-experiment. removing row conditioning is almost unnatural.

No one does it — no controversy! ©

KDD settings: D is built by actually sampling from a distribution
whose domain also include the group label:

the row totals are random variables and rightly so.

So let’s stop conditioning, and only keep the sample size n as fixed.
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Why no conditioning? (1)

Single-experiment. removing row conditioning is almost unnatural.

No one does it — no controversy! ©

KDD settings: D is built by actually sampling from a distribution
whose domain also include the group label:

the row totals are random variables and rightly so.

So let’s stop conditioning, and only keep the sample size n as fixed.

How? GHE
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