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We presentMiSoSouP, a suite of algorithms for extracting high-quality approximations of the most interesting

subgroups, according to different popular interestingness measures, from a random sample of a transactional

dataset. We describe a new formulation of these measures as functions of averages, that makes it possible

to approximate them using sampling. We then discuss how pseudodimension, a key concept from statistical

learning theory, relates to the sample size needed to obtain an high-quality approximation of the most

interesting subgroups. We prove an upper bound on the pseudodimension of the problem at hand, which

depends on characteristic quantities of the dataset and of the language of patterns of interest. This upper

bound then leads to small sample sizes. Our evaluation on real datasets shows thatMiSoSouP outperforms

state-of-the-art algorithms offering the same guarantees, and it vastly speeds up the discovery of subgroups

w.r.t. analyzing the whole dataset.
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“Miso makes a soup loaded with flavour that saves you the hassle of making stock.” – Y. Ottolenghi [21]

1 INTRODUCTION
A fundamental task within data mining is subgroup discovery [11, 13, 37], which requires to identify

interesting subsets (the subgroups) of a dataset, for which the distribution of a specific feature (the

target) within the subgroup largely differs from the distribution of that feature in the entire dataset.

The notion of interestingness is captured by a formally-defined measure of quality that combines the

frequency of the subgroup in the dataset and the difference between the mean of the target within

the subgroup and the mean of the target in the entire dataset. Subgroup discovery is a broadly

applicable task and is relevant in many domains: in market basket analysis, it uncovers groups of

customers with a particular interest in buying a product; in social networks, it identifies members

attracted to a given topic; in biomedicine, it discovers groups of patients associated with a clinical

phenotype, such as response to therapy.
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Many exact algorithms for subgroup discovery have been proposed [13, 37] (see also the com-

prehensive reviews by Herrera et al. [8] and Atzmueller [2]). They naturally require to process

the entire dataset, but the sheer amount of data may render such full computation infeasible. A

general approach to deal with very large datasets is to only analyze a small random sample of
the data. Random sampling has been successful in many areas of knowledge discovery, such as

frequent itemsets mining [25, 26] and graph analysis [27]. The main challenge in using sampling

for subgroup discovery is understanding how close the qualities of the subgroups observed in the

sample are to their exact values, which are unknown as they can only be obtained by processing the

entire dataset. Solving this challenge requires the derivation of a sample size 𝑆 such that, with high

probability (over the possible samples), on a sample of size 𝑆 , all the subgroup qualities measured

on the sample are within 𝜀 from their value in the dataset, where 𝜀 is an user-specified parameter,

controlling the maximum allowed error and to be fixed with domain knowledge.

The derivation of such sample size for subgroup discovery is more complex than in other scenarios

such as frequent itemsets mining [25, 26], since estimating the quality of a subgroup requires to

approximate both the frequency of the subgroup in the dataset and the mean of the target within
the subgroup. The latter is an especially challenging inferential task since it amounts to estimating

a conditional expectation. Additionally, there are many measures of interestingness for subgroups,

and each needs a “personalized” approach. This increased complexity is reflected in the lack of

rigorous sampling algorithms for subgroup discovery, with even popular approaches [30] not

providing rigorous quality guarantees on their output, as we discuss in App. A.

1.1 Contributions
The main focus of this work is the extraction of a high-quality approximation of the top-𝑘 most

interesting subgroups from a random sample of the dataset. Our contributions are the following.

• We precisely define the concept of 𝜀-approximation of the set of top-𝑘 subgroups according to

many popular interestingness measures, extending and strengthening an existing definition

by Scheffer and Wrobel [30, Def. 2]. The user-defined parameter 𝜀 controls the quality of the

approximation (see Def. 3.3).

• We give a new formulation of the 1-quality (see Sect. 4.1), one of the key measures of sub-

group interestingness, and as a consequence also of other fundamental measures. This novel

formulation is crucial to enable the estimation of the interestingness of subgroups from a

sample. It is also at the basis of our approach to compute high-quality approximation for the

collection of interesting subgroups according to other measures, such as 2- and 1/2-qualities.
• We present MiSoSouP, a suite of algorithms that use random sampling to extract, with

probability at least 1 − 𝛿 (for some user-specified 𝛿 ∈ (0, 1), which controls the confidence in

the results) over their runs, 𝜀-approximations of the set of top-𝑘 interesting subgroups from

a small random sample of the dataset (see Sect. 4). We present specialized algorithms for

different interestigness measures, showcasing the generality and the power of our approach.

Ours are the first algorithms able to obtain such approximations, while previous work [30]

does not actually provide rigorous guarantees (see App. A). The only parameters of MiSoSouP
are 𝜀, 𝑘 , and the failure probability 𝛿 , which are all easily interpretable, therefore making

MiSoSouP algorithms very practical.

• We use pseudodimension [23], a key concept from statistical learning theory [35] (see Sect. 3.2),

to derive the sample sizes employed in MiSoSouP. We show an upper bound to the pseu-

dodimension of the task of subgroup discovery (see Sect. 4.1.4). This bound is independent

from the size of the dataset and only depends on properties of the set of possible subgroups

(known as the language) and on the number of columns of the dataset. The computation of

ACM Trans. Knowl. Discov. Data., Vol. 14, No. 5, Article 56. Publication date: June 2020.



MiSoSouP: : Mining Interesting Subgroups with Sampling and Pseudodimension 56:3

the upper bound is essentially cost-free. We also show an almost matching lower bound (see

Lemma 4.11). To the best of our knowledge, ours is the first application of pseudodimension

to the field of subgroup discovery, and in general to pattern mining.

• We perform an extensive experimental evaluation (see Sect. 5) showing that MiSoSouP
identifies rigorous approximations to the most interesting subgroups using a small fraction

of the dataset, and it provides a significant speed-up w.r.t. other sampling approaches with

the same guarantees.

2 RELATEDWORK
Many measures for evaluating the quality (i.e., interestingness) of subgroups have been proposed

in the literature, and many subgroup discovery algorithms are available. We discuss some of the

measures in Sect. 3, and refer the reader to the surveys by Herrera et al. [8] and Atzmueller [2] for

details about the algorithms. In this work we treat these algorithms as black-boxes: we run them on

a small random sample of the dataset and we are interested in how well the so-obtained collection

of interesting subgroups approximates the one we would obtain by mining the whole dataset.

Scheffer and Wrobel [30] first studied the use of sampling for subgroups: they present GSS, a
progressive sampling algorithm to compute an approximation of the most interesting subgroups.

Unfortunately, the analysis of GSS has some issues. The first concern is that the quantities of

interest (e.g., the number of subgroups at iteration 𝑖) are random variables, while the analysis

assumes that they are fixed values, i.e., it is essentially conditioning on the outcome. Another

major issue is that the analysis uses a Chernoff bound [19, Ch. 4] for the probability of deviation

for the in-sample unusualness of a subgroup from its expectation (i.e., the unusualness of that

subgroup in the whole dataset), but applying a Chernoff bound is improper, since the unusualness

is a conditional probability, hence it cannot be obtained as the average of a binary function over

all transactions in the sample. These and other issues are discussed more in depth together with

partial possible solutions in App. A. Even when (partially) corrected, the analysis of GSS relies

on the availability of probabilistic confidence intervals on the estimated quality of each subgroup

under consideration, and then on a union bound [19, Lemma 1.2]over all possible subgroups, in

order to obtain simultaneous guarantees on the confidence intervals of all subgroups. The union

bound is, by design, loose in many practical situations, effectively assuming that the considered

events are independent. As a results, the stopping condition used by GSS cannot be satisfied at

small sample sizes. MiSoSouP instead relies on pseudodimension [23], which allows us to use very

small sample sizes.

Some works focused on the issue of the statistical significance of subgroups. Duivesteijn et al. [6]

designed a permutation-based approach to estimate the distribution of false discoveries, which is

used to assess the ability of various quality measures to distinguish between statistically significant

patterns and false discoveries. van Leeuwen and Ukkonen [34] showed that several real datasets

contain large numbers of high-quality subgroups, many more than are expected from randomly

drawn subgroups. Terada et al. [32] introduced LAMP, a method to identify a minimum generality

threshold to find subgroups while bounding the family-wise error rate (FWER), where the signifi-

cance of a subgroup is given by its association with a binary target variable as assessed by Fisher’s

exact test. Minato et al. [18] subsequently improved LAMP by employing a more efficient mining

strategy. We do not investigate the issue of statistical significance of subgroups, but one of the

quality measures we study (i.e., the 1/2-quality measure, see Sect. 3) is a proxy for the 𝑧-score, a

well-defined measure of statistical significance.

Our approach is orthogonal to heuristic approaches that sample subgroups to speed-up the

discovery of interesting subgroups [4, 20]. In contrast, MiSoSouP samples transactions while
providing rigorous guarantees on the relation between the qualities of the subgroups obtained from
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the sample and their exact qualities, i.e., those one would measure on the entire dataset. MiSoSouP
can use any exact or heuristic algorithm to mine the sample, while maintaining the aforementioned

guarantees for the resulting subgroups. The use of sampling is also orthogonal to techniques that

aim at reducing the redundancy in the output collection of subgroups [33]. Indeed these approaches

could be applied to the collection of subgroups obtained by MiSoSouP.
Pseudodimension [23] is a key concept from statistical learning theory [35]. Like many other

measures of sample complexity, such as Rademacher averages, it has long been considered only of

theoretical interest, but recent applications [7, 10, 24, 26, 27] of these quantities have shown that

they can be extremely useful in practice, especially on very large datasets. Pseudodimension is

closely related to the concept of Vapnik-Chervonenkis dimension that has been used in the context

of frequent itemsets mining by Riondato and Upfal [25]. Despite the relative similarity between

subgroup discovery and frequent itemset mining, using pseudodimension for the former presents

significant challenges, such as lack of anti-monotonicity in the quality measures, that do not allow

to use the same approach by Riondato and Upfal [25]. To the best of our knowledge, ours is the

first application of concepts from statistical learning theory to the task of subgroup discovery.

This version of the work differs from the preliminary one that appeared in the proceedings of

ACM KDD’18 [29]. The most important addition is the presentation of algorithms for all three

quality measures that we study, rather than just for one. This change shows the flexibility of our

approach. The second major change is the inclusion of additional experiments for these measures.

A third major change is that we show an almost matching (up to the additive constant 1) lower
bound for our upper bound to the pseudodimension of the task at hand. We also added running

examples to all our definitions to make them more concrete.

3 PRELIMINARIES
In this section we introduce the core definitions and theorems that we use throughout the article.

The main notation that we use is reported also in Table 1.

3.1 Subgroup discovery
We now define the fundamental concepts of subgroup mining [12] and the quality measures used

to rank the subgroups.

Let D be a dataset, i.e., a bag of (𝑧 + 1)-dimensional tuples, known as transactions, over the
attributes {𝐴1, . . . , 𝐴𝑧,𝑇 }. The attributes𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑧 are known as description attributes, while𝑇 is

the target attribute. Transactions take value inY1 × · · · ×Y𝑧 ×Y𝑇 , where eachY𝑖 is the (categorical
or numerical) domain of attribute 𝐴𝑖 , while Y𝑇 is Boolean (i.e., Y𝑇 = {0, 1}). Table 2 shows an

example of a dataset with four transactions over four attributes.

A subgroup is a conjunction of disjunctions of conditions on the description attributes. An example

of subgroup is

(𝐴1 = “blue” ∨𝐴1 = “red”) ∧ (𝐴2 ≥ 4) . (1)

A transaction 𝑡 ∈ D supports a subgroup 𝑌 if the values of 𝑡 ’s attributes satisfy 𝑌 . The cover
CD (𝑌 ) of 𝑌 on D is the bag of transactions in D that support 𝑌 . For example, the first two

transactions in the example dataset in Table 2 support the subgroup defined in (1), while the other

two transactions do not support it, so the cover of this subgroup is the set containing only the first

two transactions.
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Symbol Description

D dataset

𝐴𝑖 𝑖-th description attribute in the dataset

𝑇 target attribute

𝑌 generic subgroup

L language of subgroups of interest

CD (𝑌 ) cover of 𝑌 on D
𝑔D (𝑌 ) generality of 𝑌 on D

𝜇D (𝑌 ), 𝜇 (D) target mean of the cover of 𝑌 on D, and target mean of D, respectively

uD (𝑌 ) unusualness of 𝑌 on D
q(𝑝)D (𝑌 ) 𝑝-quality of 𝑌 on D
r(𝑝)D (𝑘) 𝑝-quality on D of the top-𝑘-th subgroup

LD subset of L of the subgroups actually appearing in D
F family of functions from a domainH to [𝑎, 𝑏] ⊂ R

PD(F ) pseudodimension of F
m𝑍 (𝑓 ) mean of the function 𝑓 on a set 𝑍

S uniform, independent sample of transactions from D
q̃(𝑝)S (𝑌 ) approximate 𝑝-quality of 𝑌 on S
r̃(𝑝)S (𝑘) approximate 𝑝-quality on S of the top-𝑘-th subgroup (w.r.t. this measure)

P family of functions associated to L on D
Table 1. Main notation used in this work

𝐴1 𝐴2 𝐴3 𝑇

blue 4 circle 1

red 7 square 0

blue 3 square 1

green 2 square 1

Table 2. Example dataset

The generality gD (𝑌 ) of a subgroup 𝑌 on D is the ratio between the size of the cover of 𝑌 on D
and the size of D:

gD (𝑌 ) =
|CD (𝑌 ) |
|D| .1

For example, the subgroup from (1) has generality 1/2 on the dataset in Table 2.

Given a bag B of transactions, let

𝜇 (B) = 1

|B|
∑︁
𝑡 ∈B

𝑡 .𝑇

be the target mean of B, where 𝑡 .𝑇 denotes the value in the target attribute of the tuple 𝑡 . If B = ∅,
𝜇 (B) = 0. The target mean of a subgroup 𝑌 on D is

𝜇D (𝑌 ) = 𝜇 (CD (𝑌 )) .

1
We use |𝐵 | to denote the size of a bag 𝐵, i.e., the number of elements in 𝐵, counting repeated elements multiple times.
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The unusualness2 uD (𝑌 ) of 𝑌 on D is the difference between the target mean of 𝑌 and the target

mean of D:

uD (𝑌 ) = 𝜇D (𝑌 ) − 𝜇 (D) .

The unusualness of the subgroup from (1) on the dataset in Table 2 is

1

2

− 3

4

= −1
4

.

The generality and the unusualness are used to define quality measures for the subgroups (see

Sect. 3.1.1).

A description language L is a set of subgroups that are of potential interest, and is fixed in advance
by the user before analyzing the dataset. It could be a superset or a subset of the subgroups that

actually appear in the dataset, and it expresses the constraint that only subgroups in the description

language should be considered in the mining process. For example, given some integer𝑚, one may

consider the description language of all and only the subgroups composed of up to𝑚 conjunctions

of equality conditions on the attributes. Another example is the language of subgroups composed

of up to two conjunctions of disjunctions of no more than two conditions. The subgroup in (1)

belongs to this language.

3.1.1 Quality measures. A quality measure for the subgroups in L on a dataset D is a function

𝜙D : L → R which assigns a numerical score to each subgroup 𝑌 ∈ L based on its generality and

unusualness. In this work we consider the most popular subgroup quality measures [13], which

differ from each other for the relative weight given to generality and unusualness.

Definition 3.1 ([11, 22, 37]). Let 𝑝 ∈ {1/2, 1, 2}. The 𝑝-quality of a subgroup 𝑌 on a dataset D is

q(𝑝)D (𝑌 ) = (gD (𝑌 ))
𝑝 uD (𝑌 ) .

The subgroup in (1) has 1-quality equal to −1/8 on the dataset from Table 2.

The 1-quality is also known asWeighted Relative Accuracy (WRAcc).
3
The

1/2-quality is propor-

tional to the 𝑧-score4 for the statistic |CD (𝑌 ) |𝜇D (𝑌 ), which can be used to test whether a subgroup

shows statistical association with the target variable. Thus, the
1/2-quality can be used as a proxy

for the statistical significance of subgroup 𝑌 [11, 30, 34]. The domain Y𝑇 of the target attribute is

Boolean, thus q(𝑝)D (𝑌 ) ∈ [−1, 1] for any subgroup 𝑌 . There exist variants of the 𝑝-qualities that

consider the absolute value of the unusualness [30]. MiSoSouP can be easily adapted to work with

such measures.

3.1.2 Subgroup discovery task. Fix 𝑝 ∈ {1/2, 1, 2}. Let LD be the subset of L containing only the

subgroups of L that actually appear in D, i.e., those with generality strictly greater than zero.

We do not assume to know LD : it is only needed for the following definition. Assume to sort the

subgroups in LD in decreasing order according to their 𝑝-quality in D, ties broken arbitrarily. Let

𝑘 > 0 be an integer and let r(𝑝)D (𝑘) be the 𝑝-quality of the 𝑘-th subgroup in the sorted order.

2
Scheffer and Wrobel [30] use the term statistical unusualness. We choose to drop the adjective to avoid confusion with

statistical significance.
3
van Leeuwen and Ukkonen [34] denote the

1/2-quality as “WRAcc”, but all other references we found (e.g., [8, 15]) use this

name to denote the 1-quality.

4
The 𝑧-score for a test statistic 𝑋 is (𝑋 − E[𝑋 ])/𝜎𝑋 , where E[𝑋 ] is the expectation and 𝜎𝑋 is the standard deviation of 𝑋

under the null hypothesis. For subgroups, under the null hypothesis of no association of a subgroup 𝑌 with the target, the

𝑧-score of |CD (𝑌 ) |mD (𝑌 ) is:

|CD (𝑌 ) |𝜇D (𝑌 ) − |CD (𝑌 ) |𝜇 (D)√︁
CD (𝑌 )𝜇 (D) (1 − 𝜇 (D))

=
(CD (𝑌 ))

1

2 uD (𝑌 )√︁
𝜇 (D) (1 − 𝜇 (D))

= q(1/2)D (𝑌 )

√︄
|D |

𝜇 (D) (1 − 𝜇 (D)) .
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Definition 3.2. The subgroup discovery task consists in extracting the set TOP𝑝 (𝑘,D) of the top-𝑘
subgroups in LD w.r.t. the 𝑝-quality in D , i.e., the set of subgroups with 𝑝-quality at least r(𝑝)D (𝑘):

TOP𝑝 (𝑘,D) =
{
𝑌 ∈ LD : q(𝑝)D (𝑌 ) ≥ r(𝑝)D (𝑘)

}
.

TOP𝑝 (𝑘,D) may contain more than 𝑘 elements when many subgroups have 𝑝-quality equal to

r(𝑝)D (𝑘).
5

A variant of the task allows the user to specify a constraint on the minimum generality of

returned subgroups.MiSoSouP can handle this case with minor modifications.

3.1.3 Approximations. We want to obtain an 𝜀-approximation to the set TOP𝑝 (𝑘,D) from a small

random sample of the dataset, where 𝜀 ∈ (0, 1) is an user-defined parameter that controls the

maximum acceptable error. Formally this concept is defined as follows.

Definition 3.3. Let 𝜀 ∈ (0, 1). An 𝜀-approximation to TOP𝑝 (𝑘,D) is a set B of pairs (𝑌, 𝑞𝑌 ) where
𝑌 is a subgroup and 𝑞𝑌 is a value in [−1, 1], and B is such that:

(1) for any 𝑌 ∈ TOP𝑝 (𝑘,D), there is a pair (𝑌, 𝑞𝑌 ) ∈ B; and
(2) there is no pair (𝑌, 𝑞𝑌 ) ∈ B such that

q(𝑝)D (𝑌 ) < r(𝑝)D (𝑘) − 𝜀; and
(3) for each pair (𝑌, 𝑞𝑌 ) ∈ B, |q(𝑝)D (𝑌 ) − 𝑞𝑌 | ≤ 𝜀/4.

MiSoSouP computes (with high probability) an 𝜀-approximation from a random sample of the

dataset. For the
1/2-quality, we define slightly different conditions for an 𝜀-approximation (presented

in Sect. 4.3).

An 𝜀-approximation can act as a set of candidates for TOP𝑝 (𝑘,D), as it contains a pair (𝑌, 𝑞𝑌 )
for each subgroup 𝑌 in this set. Scheffer and Wrobel [30, Definition 2] present a slightly different

definition of approximation. Such an approximation is not a set of candidates for TOP𝑝 (𝑘,D), and
in particular its intersection with this set may be empty. On the other hand, if we sort the pairs

in an 𝜀-approximation by decreasing order of their second component, ties broken arbitrarily, the

set of the subgroups in the first 𝑘 pairs according to this order is an approximation in the sense

defined by Scheffer and Wrobel [30]. The choice of 𝜀, similarly to the choice of 𝑘 in Def. 3.2, must

be informed, at least in part, by domain knowledge. For example, when 𝑝 = 1, one may want to set

𝜀 so that 𝜀 ≤ r(1)D (𝑘) + 𝜇 (D) in order to avoid a trivial approximation containing all subgroups, and

the condition can be verified after obtaining the approximation. In addition, the quantity 1 − 𝜇 (D)
can act, in some sense, as an upper bound to the possible choice of 𝜀, as no subgroup can have

1-quality greater than this quantity.

3.2 Pseudodimension
We now introduce the main concepts and results on VC-dimension [36] and pseudodimension [23],

specializing some of them to our settings.
6

3.2.1 VC-dimension. LetW be a finite domain and let R ⊆ 2
W

be a collection of subsets ofW,

where 2
W

is the set of all subsets ofW. We call R a rangeset onW, and call its members ranges.
The set 𝐴 ⊆ W is shattered by R if {𝑅 ∩ 𝐴 : 𝑅 ∈ R} = 2

𝐴
. The VC-dimension VC(W,R) of

(W,R) is the size of the largest subset ofW that can be shattered by R.
5
This definition of the task is therefore slightly different from the one given in [30, Definition 1], where the size of

TOP𝑝 (𝑘,D) is limited to exactly 𝑘 elements.

6
For an in-depth discussion of these topics see, e.g., the books by Shalev-Shwartz and Ben-David [31] and by Anthony and

Bartlett [1].
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The following example of VC-dimension is by Riondato and Upfal [27, Sect. 3.3]. LetW = R and

let R be the collection of closed intervals of R, i.e.,

R = {[𝑎, 𝑏], 𝑎 < 𝑏 ∈ R} .

A set 𝐴 = {𝑐, 𝑑} of two distinct reals 𝑐, 𝑑 ∈ R can be shattered as follows. W.l.o.g., let 𝑐 < 𝑑 , and

define 𝑔 = 𝑐 + (𝑑 − 𝑐)/2, and let ℎ1 and ℎ2 be such that ℎ1 < ℎ2 < 𝑐 . Consider the ranges [ℎ1, ℎ2],
[𝑐, 𝑔], [𝑔,𝑑], [𝑐, 𝑑]. Each intersection of each of one of these ranges with 𝐴 is a different subset of

{𝑐, 𝑑}, and for each 𝐵 of the four subsets of 𝐴 there is one range 𝑅𝐵 of the four above such that

𝐴 ∩ 𝑅𝐴 = 𝐵. Thus 𝑃R (𝐴) = 2
𝐴
, i.e., the set 𝐴 is shattered by R.

Consider now a set𝐶 = {𝑐, 𝑑, 𝑓 } of three different points 𝑐 < 𝑑 < 𝑓 ∈ R. There is no range 𝑅 ∈ R
such that 𝑅 ∩ 𝐶 = {𝑐, 𝑓 }. Indeed all intervals that contain 𝑐 and 𝑓 must also contain 𝑑 . Thus, 𝐶

cannot be shattered, because it must be 𝑃R (𝐶) ≠ 2
𝐶
. This fact holds for all sets 𝐶 of three points,

so the VC-dimension of R is VC(R) = 2.

3.2.2 Pseudodimension. Pseudodimension [23] is an extension of VC-dimension [36] to real-valued
functions, defined as follows.

Let F be a family of functions from a domain H onto [𝑎, 𝑏] ⊂ R. In this work H will be the

dataset D, and F will contain one function 𝑓𝑌 for each subgroup 𝑌 ∈ L (see Sect. 4.1.1). Consider,

for each 𝑓 ∈ F , the subset 𝑅𝑓 ofH × [𝑎, 𝑏] defined as

𝑅𝑓 = {(𝑥, 𝑡) : 𝑡 ≤ 𝑓 (𝑥)} .

Let

F + = {𝑅𝑓 , 𝑓 ∈ F },
be a rangeset on H × [𝑎, 𝑏]. The pseudodimension PD(F ) of F is the VC-dimension of (H ×
[𝑎, 𝑏], F +) [1, Sect. 11.2]:

PD(F ) = VC(H × [𝑎, 𝑏], F +) .

The following example of pseudodimension is by Riondato and Upfal [27, Sect. 3.3]. Consider

the family F of functions from (0, 1] to [0, 1] defined as

F = {𝑓𝑘 (𝑥) = 𝑘𝑥, for 0 < 𝑘 ≤ 1} .

The pseudodimension of F is PD(F ) = 1. For each 𝑓𝑘 ∈ F , i.e., for each 0 < 𝑘 ≤ 1, the set 𝑅𝑓𝑘 = 𝑅𝑘
is

𝑅𝑘 = {(𝑥,𝑦), 0 ≤ 𝑥 ≤ 1 and 𝑦 ≤ 𝑘𝑥} .

It is a useful exercise to check how to shatter a set containing a single point (𝑥,𝑦), 0 ≤ 𝑥,𝑦 ≤ 1.

To show that PD(F ) = 1 we need to show that no set 𝐴 of two pairs (𝑥1, 𝑦1) and (𝑥2, 𝑦2) can be

shattered by F +. First of all, notice that it must be 𝑦1 ≤ 𝑥1 and 𝑦2 ≤ 𝑥2 because there is no range 𝑅𝑘
that contains (𝑥,𝑦) if 𝑦 > 𝑥 . Assume now w.l.o.g. that 𝑥1 ≤ 𝑥2. If 𝑦1 > 𝑦2, then there is no 𝑘 ∈ [0, 1]
such that 𝑘𝑥1 ≥ 𝑦1 and 𝑘𝑥2 < 𝑦2, thus there is no range 𝑅𝑘 such that 𝐴 ∩ 𝑅𝑘 = {(𝑥1, 𝑦1)}. If instead
𝑦1 ≤ 𝑦2, then let 𝑧 = 𝑦2/𝑥2. We have to consider two sub-cases:

(1) if 𝑦1 > 𝑧𝑥1, then there is no 𝑘 ∈ [0, 1] such that 𝑘𝑥1 ≥ 𝑦1 and 𝑘𝑥2 < 𝑦2, thus there is no range

𝑅𝑘 such that 𝐴 ∩ 𝑅𝑘 = {(𝑥1, 𝑦1)}. To see this, assume that such a 𝑘 exists. Then it would hold

that 𝑘 > 𝑧 because 𝑘𝑥1 ≥ 𝑦1 > 𝑧𝑥1, thus 𝑘𝑥2 > 𝑧𝑥2 = 𝑦2, which is a contradiction.

(2) if 𝑦1 ≤ 𝑧𝑥2, then there is no 𝑘 ∈ [0, 1] such that 𝑘𝑥1 < 𝑦1 and 𝑘𝑥2 ≥ 𝑦2, thus there is no range

𝑅𝑘 such that 𝐴 ∩ 𝑅𝑘 = {(𝑥2, 𝑦2)}. To see this, assume that such a 𝑘 exists. Then it would hold

that 𝑘 < 𝑧 because 𝑘𝑥1 < 𝑦1 ≤ 𝑧𝑥1, thus 𝑘𝑥2 < 𝑧𝑥2 = 𝑦2, which is a contradiction.

Hence, the set 𝐴 cannot be shattered, implying PD(F ) = 1.
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3.2.3 Uniform convergence. Let S = {𝑥1, . . . , 𝑥ℓ } be a bag of elements ofH , sampled independently

and uniformly at random, with replacement. For each 𝑓 ∈ F , define

mH (𝑓 ) =
1

|H |
∑︁
𝑥 ∈H

𝑓 (𝑥) and mS (𝑓 ) =
1

ℓ

ℓ∑︁
𝑖=1

𝑓 (𝑥𝑖 ) .

We call mS (𝑓 ) the empirical average of 𝑓 on S. It holds E[mS (𝑓 )] = mH (𝑓 ). The following

result connects an upper bound to the pseudodimension of F to the number of samples needed

to simultaneously approximate all the expectations of all the functions in F using their sample

averages.

Theorem 3.4 ([16]). Let PD(F ) ≤ 𝑑 . Fix 𝜉, 𝜂 ∈ (0, 1). When S is a collection of

|S| = (𝑏 − 𝑎)
2

𝜉2

(
𝑑 + log 1

𝜂

)
(2)

elements sampled independently and uniformly at random with replacement from H , then, with
probability at least 1 − 𝜂 over the choice of S, it holds

|mH (𝑓 ) −mS (𝑓 ) | < 𝜉, for every 𝑓 ∈ F .

The following two lemmas by Riondato and Upfal [27, Lemmas 3.7 and 3.8] are useful when

proving upper bounds to the pseudodimension of a family of functions.

Lemma 3.5. If 𝐵 ⊆ H × [𝑎, 𝑏] is shattered by F +, it may contain at most one element (𝑑, 𝑥) ∈
H × [𝑎, 𝑏] for each 𝑑 ∈ H .

Lemma 3.6. If 𝐵 ⊆ H × [𝑎, 𝑏] is shattered by F +, it cannot contain any element in the form (𝑑, 𝑎),
for any 𝑑 ∈ H .

4 ALGORITHMS
We now present MiSoSouP, our suite of algorithms to compute 𝜀-approximations of TOP𝑝 (𝑘,D).

4.1 MiSoSouP for 1-quality
We start by introducing a family P of functions which we use to give a novel expression for the

1-quality of a subgroup. We then present a sufficient condition for extracting an 𝜀-approximation

from a sample, and derive bounds to the sample size sufficient to ensure that the condition holds

with high probability. Finally ,we describe the algorithm.

4.1.1 A novel formulation of the 1-quality. The family P contains one function 𝜌𝑌 from D to

{−𝜇 (D), 0, 1 − 𝜇 (D)} for each subgroup 𝑌 ∈ L, defined, for 𝑡 ∈ D, as:

𝜌𝑌 (𝑡) =


1 − 𝜇 (D) if 𝑡 ∈ CD (𝑌 ) and 𝑡 .𝑇 = 1

−𝜇 (D) if 𝑡 ∈ CD (𝑌 ) and 𝑡 .𝑇 = 0

0 otherwise

. (3)

We assume to know the exact value of 𝜇 (D), which is a standard and reasonable assumption (made

also by Scheffer and Wrobel [30]), since 𝜇 (D) can be computed with a very quick scan of the target

attribute on D, or kept up-to-date while collecting the data.
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The 1-quality of a subgroup𝑌 can be expressed as the average over the transactions in the dataset

of the function 𝜌𝑌 :

mD (𝜌𝑌 ) =
1

|D|
∑︁
𝑡 ∈D

𝜌𝑌 (𝑡)

=
1

|D| ((1 − 𝜇 (D))𝜇D (𝑌 ) |CD (𝑌 ) | − 𝜇 (D)|CD (𝑌 ) | (1 − 𝜇D (𝑌 )))

=
|CD (𝑌 ) |
|D| (𝜇D (𝑌 ) − 𝜇 (D)) = gD (𝑌 )uD (𝑌 ) = q(1)D (𝑌 ) . (4)

This equivalence is a novel insight of crucial importance to enable the efficient estimation of the

1-quality from a sample of the dataset.

Let now S = {𝑡1, . . . , 𝑡ℓ } be a collection of transactions sampled uniformly and independently at

random with replacement from D. It holds, following the same steps as in (4), that

mS (𝜌𝑌 ) =
1

ℓ

ℓ∑︁
𝑖=1

𝜌𝑌 (𝑡𝑖 ) = gS (𝑌 ) (𝜇S (𝑌 ) − 𝜇 (D)) .

This quantity is different from q(1)S (𝑌 ), as it uses 𝜇 (D) rather than 𝜇 (S). As mentioned earlier, it is

reasonable to assume knowledge of 𝜇 (D). We define the approximate 1-quality of 𝑌 on S as

q̃(1)S (𝑌 ) = mS (𝜌𝑌 ) .

4.1.2 Sufficient condition for an 𝜀-approximation. We now show a condition on the sample S that

is sufficient to allow the computation of an 𝜀-approximation of TOP1 (𝑘,D) from S. Assume to sort

the subgroups in L in decreasing order by their approximate 1-quality on S, ties broken arbitrarily.

Let r̃(1)S (𝑘) be the approximate 1-quality on S of the 𝑘-th subgroup in this order.

Theorem 4.1. If S is such that

|q̃(1)S (𝑌 ) − q
(1)
D (𝑌 ) | ≤

𝜀

4

for every 𝑌 ∈ L, (5)

then the set
B =

{(
𝑌, q̃(1)S (𝑌 )

)
: q̃(1)S (𝑌 ) ≥ r̃(1)S (𝑘) −

𝜀

2

}
(6)

is an 𝜀-approximation to TOP1 (𝑘,D).

Proof. Equation (5) holds in particular for subgroups appearing in the pairs in B. Thus, B
satisfies Property 3 from Def. 3.3. It holds

r̃(1)S (𝑘) ≥ r(1)D (𝑘) −
𝜀

4

(7)

because all the subgroups in TOP1 (𝑘,D), which are at least 𝑘 , have, from (5), approximate 1-quality

in S at least r(1)D (𝑘) − 𝜀/4. Another consequence of (5) is that

r̃(1)S (𝑘) ≤ r(1)D (𝑘) +
𝜀

4

(8)

because only subgroups with exact 1-quality in D strictly greater than r(1)D (𝑘) can have an ap-

proximate 1-quality in S strictly greater than r(1)D (𝑘) + 𝜀/4, and there are only at most 𝑘 − 1 such
subgroups. It then holds from (8) and (5) that

q̃(1)S (𝑍 ) ≥ r̃(1)S (𝑘) −
𝜀

2

for all 𝑍 ∈ TOP1 (𝑘,D) .

Thus B satisfies Property 1 of Def. 3.3.
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Let now 𝑌 be any subgroup with q(1)D (𝑌 ) < r(1)D (𝑘) − 𝜀. It follows from (5) that

q̃(1)S (𝑌 ) ≤ r(1)D (𝑘) − 3𝜀/4,

and using (7) we get

q̃(1)S (𝑌 ) < r̃(1)S (𝑘) − 𝜀/2,

hence

(
𝑌, q̃(1)S (𝑌 )

)
∉ B, as required by Property 2 of Def. 3.3. □

4.1.3 Loose bounds to the sufficient sample size. Intuition correctly suggests that if the sample S
is large enough, then with high probability over the choice of S, S satisfies the condition in (5),

thus allowing the computation of an 𝜀-approximation of TOP1 (𝑘,D) from S. To warm up, and as a

baseline, we first present a loose bound on how large S should be for the above to happen.

Theorem 4.2. Let 𝛿 ∈ (0, 1), 𝜀 ∈ (0, 1), and 𝑘 ≥ 1. Let S be a collection of

|S| ≥ 16

𝜀2

(
ln |LD | + ln

2

𝛿

)
(9)

transactions sampled uniformly at random with replacement from D. With probability at least 1 − 𝛿
(over the choice of S), the set

B =

{(
𝑌, q̃(1)S (𝑌 )

)
: q̃(1)S (𝑌 ) +

𝜀

2

≥ r̃(1)S (𝑘)
}

is an 𝜀-approximation to TOP1 (𝑘,D).

To prove this result, we first recall the two-tailed Hoeffding’s inequality [9].

Theorem 4.3. Let 𝑓 be a function from a domain Y to [𝑎, 𝑏] ⊆ R. Let S = (𝑥1, . . . , 𝑥ℓ ) be a
collection of independent samples from Y, and let 𝜉 ∈ (0, 1). Then

Pr ( |mS (𝑓 ) − E [mS (𝑓 )] | ≥ 𝜉) ≤ 2 exp

(
− 𝑛𝜉2

(𝑏 − 𝑎)2

)
.

Then Thm. 4.2 is a straightforward application of Thm. 4.3, using 𝜀/4 as 𝜉 , and the fact that

𝑏 − 𝑎 = 1 for the functions in P, and the union bound [19, Lemma 1.2].

The quantity in (9) is a loose upper bound to the sample size sufficient to probabilistically obtain

an 𝜀-approximation, due to the use of the union bound. It is also somewhat intuitive that the

sample size should not depend on just the size of LD , but on a quantity that better describes the

relationship between the language and the dataset, as will be the case for the sample size used by

MiSoSouP. Another drawback is that the sample size in (9) can only be computed when the size of
LD is known, which is almost never the case. A loose upper bound to |LD | can be computed with

a full scan of the dataset, which is potentially expensive (see details in Sect. 5). The sample size

used byMiSoSouP, presented next, does not suffer from these downsides.

4.1.4 Bounds to the pseudodimension and to the sample size. In this section we present a novel upper
bound to the number of samples needed to satisfy the condition in (5), and therefore compute an high-

quality approximation of TOP1 (𝑘,D). It relies on the following bound to the pseudodimension [23]

(see Sect. 3.2) of the family P introduced in Sect. 4.1.1.

Theorem 4.4. Let 𝑑 be the maximum number of subgroups fromL that may appear in a transaction
of D. Then, the pseudodimension PD(P) of P satisfies:

PD(P) ≤ ⌊log
2
𝑑⌋ + 1 .

ACM Trans. Knowl. Discov. Data., Vol. 14, No. 5, Article 56. Publication date: June 2020.



56:12 Matteo Riondato and Fabio Vandin

We need some intermediate results before proving this theorem. Define, for every subgroup

𝑌 ∈ L, the range
𝑅𝑌 = {(𝑡, 𝑥) : 𝑡 ∈ D and 𝑥 ≤ 𝜌𝑌 (𝑡)},

and let R = {𝑅𝑌 , 𝑌 ∈ L} be a rangeset on D × [−𝜇 (D), 1 − 𝜇 (D)].
Lemma 3.6 tells us that only subsets of D × (−𝜇 (D), 1 − 𝜇 (D)] may be shattered by R. The

following lemmas further restrict the collection of sets that may be shattered.

For any 𝑥 ∈ (−𝜇 (D), 1 − 𝜇 (D)] let

c(𝑥) =
{
1 − 𝜇 (D) if 0 < 𝑥 ≤ 1 − 𝜇 (D)
0 if − 𝜇 (D) < 𝑥 ≤ 0

.

Lemma 4.5. A set 𝐵 ⊆ D × (−𝜇 (D), 1 − 𝜇 (D)] is shattered by R if and only if the set

𝐵′ = {(𝑡, c(𝑥)) : (𝑡, 𝑥) ∈ 𝐵}
is also shattered by R. It holds |𝐵 | = |𝐵′ |.

Proof. It follows from the definition of 𝑅𝑌 , 𝑌 ∈ L, that (𝑡, 𝑥) belongs to all and only the 𝑅𝑌 ’s

that (𝑡, c(𝑥)) belongs to. Hence if 𝐵 is shattered then the same ranges that shatter it also shatter 𝐵′,
and vice versa.

The equality |𝐵 | = |𝐵′ | follows from 1) the fact that clearly it is impossible that |𝐵′ | > |𝐵 |; and 2)

Lemma 3.5 as it ensures that if 𝐵 is shattered then it cannot contain more than a single element

(𝑡, 𝑦) for a fixed 𝑡 ∈ D and some 𝑦 ∈ (−𝜇 (D), 1 − 𝜇 (D)], hence it is impossible that two or more

elements of 𝐵 are mapped by c(·) to the same element of 𝐵′. □

Lemma 4.6. Let 𝑡 ∈ D be any transaction such that 𝑡 .𝑇 = 0. No 𝐵 ⊆ D × {0, 1 − 𝜇 (D)} such that
(𝑡, 1 − 𝜇 (D)) ∈ 𝐵 can be shattered by R.

Proof. There is no subgroup 𝑌 ∈ L such that (𝑡, 1 − 𝜇 (D)) ∈ 𝑅𝑌 , thus, for any 𝐵 containing

(𝑡, 1 − 𝜇 (D)), it is impossible to find an 𝑌 ∈ L such that 𝑅𝑌 ∩ 𝐵 = {(𝑡, 1 − 𝜇 (D))}, hence 𝐵 cannot

be shattered. □

Lemma 4.7. Let 𝑡 ∈ D be any transaction such that 𝑡 .𝑇 = 1. No 𝐵 ⊆ D × {0, 1 − 𝜇 (D)} such that
(𝑡, 0) ∈ 𝐵 can be shattered by R.

Proof. The element (𝑡, 0) belongs to 𝑅𝑌 for any 𝑌 ∈ L, so for any 𝐵 containing (𝑡, 0), it is
impossible to find an 𝑌 ∈ L such that 𝑅𝑌 ∩ 𝐵 = ∅, hence 𝐵 cannot be shattered. □

It follows from Lemmas 3.6 and 4.5 to 4.7 that, to prove Thm. 4.4, we can focus our attention

only on trying to shatter subsets of D × [−𝜇 (D), 1 − 𝜇 (𝐷𝑠)] containing elements that are either in

the form (𝑡, 1 − 𝜇 (D)) with 𝑡 .𝑇 = 1, or in the form (𝑡, 0) with 𝑡 .𝑇 = 0. The two following lemmas

show upper bounds to the sizes of such subsets that can be shattered by R. Theorem 4.4 is then an

immediate consequence.

Lemma 4.8. Let 𝐵 ⊆ D × {0, 1 − 𝜇 (D)} be a set that is shattered by R and such that 𝐵 contains an
element (𝑡, 1 − 𝜇 (D)), for some 𝑡 ∈ D. Then it must be

|𝐵 | ≤ ⌊log
2
𝑑⌋ + 1,

for 𝑑 as in Thm. 4.4.

Proof. The proof is in part inspired by the one for [25, Theorem 4.5]. Consider one of the

elements in the form (𝑡, 1 − 𝜇 (D)) belonging to 𝐵. By hypothesis there is at least one such element.

Let us denote it as 𝑎 = (𝑡, 1 − 𝜇 (D)).
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Denote the 2
|𝐵 |−1

non-empty subsets of 𝐵 containing 𝑎 as 𝐶𝑖 , 1 ≤ 𝑖 ≤ 2
|𝐵 |−1

, labelling them in

an arbitrary order. Since 𝐵 is shattered, for each of the 𝐶𝑖 ’s there must be a subgroup 𝑌𝑖 such that

𝑅𝑌𝑖 ∩ 𝐵 = 𝐶𝑖 . Since 𝐶𝑖 ≠ 𝐶 𝑗 for each 𝑖 ≠ 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2
|𝐵 |−1

, it must hold 𝑅𝑌𝑖 ≠ 𝑅𝑌𝑗
. The element 𝑎

belongs to each 𝑅𝑌𝑖 , 1 ≤ 𝑖 ≤ 2
|𝐵 |−1

. From Lemma 4.6 it follows that, since 𝐵 is shattered, then it

must be 𝑡 .𝑇 = 1. Thus the element 𝑎 belongs to all and only the ranges 𝑅𝑍 for 𝑍 ∈ L such that

𝑡 ∈ CD (𝑍 ). There are at most 𝑑 such 𝑍 ’s, hence it must be 2
|𝐵 |−1 ≤ 𝑑 . □

Lemma 4.9. Let 𝐵 ⊆ D × {0, 1 − 𝜇 (D)} be a set that is shattered by R and such that 𝐵 contains an
element (𝑡, 0), for some 𝑡 ∈ D. Then it must be

|𝐵 | ≤ ⌊log
2
𝑑⌋ + 1,

for 𝑑 as in Thm. 4.4.

Proof. Consider one of the elements in the form (𝑡, 0) that belong to 𝐵. By hypothesis there is at
least one such element. Let us denote it as 𝑎 = (𝑡, 0). The proof is similar to the one for Lemma 4.8,

but with one profound difference, i.e., we essentially consider the subsets of 𝐵 that do not contain 𝑎.
Denote the 2

|𝐵 |−1
subsets of 𝐵 not containing 𝑎 as𝐶𝑖 , 1 ≤ 𝑖 ≤ 2

|𝐵 |−1
, labelling them in an arbitrary

order. There must be an 𝑖 such that 𝐶𝑖 = ∅. Since 𝐵 is shattered, for each of the 𝐶𝑖 ’s there must be

a subgroup 𝑌𝑖 such that 𝑅𝑌𝑖 ∩ 𝐵 = 𝐶𝑖 . Since 𝐶𝑖 ≠ 𝐶 𝑗 for each 𝑖 ≠ 𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 2
|𝐵 |−1

, it must hold

𝑅𝑌𝑖 ≠ 𝑅𝑌𝑗
. The element 𝑎 does not belong to any 𝑅𝑌𝑖 , 1 ≤ 𝑖 ≤ 2

|𝐵 |−1
. From Lemma 4.5 it follows that,

since 𝐵 is shattered, then it must be 𝑡 .𝑇 = 0. Thus the element 𝑎 does not belong only to the ranges

𝑅𝑍 for 𝑍 ∈ L such that 𝑡 ∈ CD (𝑍 ). There are at most 𝑑 such 𝑍 ’s, hence it must be 2
|𝐵 |−1 ≤ 𝑑 . □

It is an interesting open question how to compute 𝑑 efficiently for a generic L. It is common to

choose L to be the set of subgroups involving conjunctions of simple equality conditions on up

to 𝑐 attributes, for some 𝑐 ≥ 1. The following corollary is a reformulation of Thm. 4.4 using the

maximum number of subgroups from L that may appear in a transaction of D for such cases.

Corollary 4.10. Let 𝑧 be the number of description attributes in D (i.e., not counting the target
attribute). Let L be the set of subgroups of conjunctions of equality conditions on up to 𝑐 attributes, for
some 1 ≤ 𝑐 ≤ 𝑧. Then

PD(P) ≤
⌊
log

2

𝑐∑︁
𝑖=1

(
𝑧

𝑖

)⌋
+ 1 . (10)

These upper bounds to the pseudodimension are almost thight, in the sense that there are datasets
that almost attain the bounds, as shown in the following Lemma, which present an almost matching

lower bound (up to the additive constant 1) to the pseudodimension.

Lemma 4.11. Let 𝑧 be a positive integer and let L be the language of subgroups of conjunctions of
simple equality conditions on up to 𝑧 attributes. There exists a dataset D with 𝑧 description attributes
such that

𝑧 − 1 =
⌊
log

2

𝑧∑︁
𝑖=1

(
𝑧

𝑖

)⌋
≤ PD(P) ≤

⌊
log

2

𝑧∑︁
𝑖=1

(
𝑧

𝑖

)⌋
+ 1 = 𝑧 .

Proof. The equalities at the extreme of the thesis come from the definition of 𝑧, and the rightmost

inequality come from corollary 4.10, so we only have to show that we can build a dataset for which

𝑧 − 1 ≤ PD(P) .

For 𝑧 = 1, in any dataset with at least two different transactions clearly is possible to shatter a set

{𝑡} of one transaction 𝑡 with the language of subgroups composed by a single equality condition:

we only need the two subgroups “𝐴1 = 𝑡 .𝐴1” and “𝐴1 = 𝑡 ′.𝐴1”, where 𝑡
′
is any transaction with
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value in 𝐴1 different than the value of 𝑡 in 𝐴1. So for 𝑧 = 1 the lower and the upper bound to the

pseudodimension actually match.

For 𝑧 > 1, consider any dataset D with 𝑧 description attributes, such that D contains the set

W = {𝑡1, . . . , 𝑡𝑧−1} of 𝑧 − 1 transactions where

𝑡𝑖 = (1, . . . , 1
𝐴1,...,𝐴𝑖−1

, 0, 1, . . . , 1

𝐴𝑖+1,...,𝐴𝑧

, 0) for each 𝑖 = 1, . . . , 𝑧 − 1 .

All the transactions inW have 𝐴𝑧 = 1, and 𝑇 = 0. We now show thatW is shattered by R. For
each non-empty 𝐶 ⊊W, let 𝐼𝐶 = {𝑖 : 𝑡𝑖 ∉ 𝐶} be the set of indices of the transactions ofW that

are not in 𝐶 , and define the subgroup

𝑌𝐶 =
∧
𝑖∈𝐼𝐶
(𝐴𝑖 = 1)

composed of conjunctions on |𝐼𝐶 | < 𝑧 attributes. Clearly 𝑌𝑐 ∈ L. For any non-empty 𝐶 ⊊W, it

holds

𝑅𝑌𝐶 ∩W = 𝐶 (11)

because

• each transaction 𝑡 ∈ 𝐶 has 𝑡 .𝐴𝑖 = 1 for every 𝑖 ∈ 𝐼𝐶 , so 𝑡 supports 𝑌𝐶 hence 𝑡 ∈ 𝑅𝑌𝐶 . Therefore
𝐶 ⊆ 𝑅𝑌𝐶 , and since 𝐶 ⊆ W, it must be

𝐶 ⊆ 𝑅𝑌𝐶 ∩W; and (12)

• for each transaction 𝑡 ∈ W \ 𝐶 there exists an 𝑖𝑡 ∈ 𝐼𝑐 such that 𝑡 .𝐴𝑖𝑡 = 0, thus 𝑡 does not

support 𝑌𝐶 , hence 𝑡 ∉ 𝑅𝑌𝐶 , which means that

𝑅𝑦 ∩ (W \𝐶) = ∅ . (13)

By combining (12) and (13) we obtain (11), which holds for each non-empty 𝐶 ⊊W. Define now the

subgroups 𝑌W = (𝐴𝑧 = 1) and 𝑌∅ = (𝐴𝑧 = 0), both of which belong to L. It holdsW = 𝑅𝑌W ∩W
and ∅ = 𝑅𝑌∅ ∩ W by construction of the transactions inW. ThusW, which contains 𝑧 − 1

transactions, is shattered by R, and PD(P) ≥ 𝑧 − 1. □

Understanding whether the looseness is in the upper bound or in the lower bound, and improving

either to obtain matching bounds to the pseudodimension, are very interesting open questions.

Bounds to the sample size. By combining Thm. 4.4 with Thm. 3.4 we obtain the following result

on the number of samples needed to guarantee, with high probability the sufficient condition to

obtain an 𝜀-approximation.

Theorem 4.12. Let 𝛿 ∈ (0, 1), 𝜀 ∈ (0, 1), and 𝑘 ≥ 1. Let 𝑑 as in Thm. 4.4. Let

𝑆 =
16

𝜀2

(
⌊log

2
𝑑⌋ + 1 + ln 1

𝛿

)
. (14)

The probability that a collection S of 𝑆 transactions sampled independently and uniformly at random
with replacement from D satisfies (5) is at least 1 − 𝛿 .

The improvement of (14) over (9) is evident: ⌊log
2
𝑑⌋ +1 is usually much much smaller, potentially

orders of magnitude so, than ln |LD |. The quantity 𝑑 depends on both the dataset and the language:

it is intuitively more “natural” that the sample size should depend on the relationship between the

two, rather than just on the language.
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4.1.5 The algorithm. We now have all the ingredients to describe and analyzeMiSoSouP-1, our
algorithm for extracting, with probability at least 1 − 𝛿 (over the runs of the algorithm), an 𝜀-

approximation to TOP1 (𝑘,D). The pseudocode is shown in Alg. 1 The input of the algorithm is

the tuple (D,L, 𝑘, 𝜀, 𝛿).

Algorithm 1:MiSoSouP-1
Input: dataset D, language L, integer 𝑘 ≥ 1, reals 𝜀, 𝛿 ∈ (0, 1)
Output: a set B of pairs (𝑌, 𝑐), where 𝑌 is a subgroup in L, and 𝑐 ∈ [−1, 1] such that B is,

with probability at least 1 − 𝛿 , an 𝜀-approximation of TOP1 (D, 𝑘).
1 𝑑 ← maxSubgroupsInTransaction(D,L)
2 𝑆 ← 16

(
⌊log

2
𝑑⌋ + 1 + ln 1/𝛿

)
/𝜀2

3 S ← uniformRandomSample(D, 𝑆)

4 r(1)S (𝑘) ← getTopKQuality(S, 𝑘)
5 B ← mineSubgroupsWithThreshold(S, r(1)S (𝑘) − 𝜀/2)
6 return B

After having computed the (upper bound to the) maximum number of subgroups of L in a

transaction of D and from it the sample size 𝑆 as in (14), MiSoSouP-1 creates the sample S by

drawing 𝑆 transactions independently and uniformly at random with replacement from D. An

exact algorithm for subgroup discovery is used to extract from S the set B defined in (6). Any

exact algorithm can be used for the discovery step, but it needs to be slightly modified to use

q̃(1)S (𝑌 ) as measure for the interestingness of a subgroup 𝑌 , instead of q(1)S (𝑌 ). This modification is

straightforward. The set B is then returned in output. By combining Thm. 4.1 with Thm. 4.12 we

obtain the following result on the quality guarantees of MiSoSouP-1.

Theorem 4.13. With probability at least 1 − 𝛿 (over its runs),MiSoSouP-1 outputs an 𝜀-approxi-
mation to TOP1 (𝑘,D).

4.2 MiSoSouP for 2-quality
In this section we presentMiSoSouP-2, the variant of MiSoSouP for computing an 𝜀-approximation

to TOP2 (𝑘,D). To obtain upper bounds on the number of samples needed by MiSoSouP-2, we will
combine the result obtained in the previous section with variants of results by Riondato and Vandin

[28] on the number of samples needed to compute a high-quality approximation of the frequent

itemsets from a random sample of a transactional dataset.

We start by defining another family G of functions, in addition to P defined in Sect. 4.1.1. The

domain of the functions in G is D. For each subgroup 𝐴 ∈ L there is one function 𝑔𝐴 ∈ G, defined
as follows, for 𝑡 ∈ D:

𝑔𝐴 (𝑡) = 1CD (𝐴) (𝑡) =
{
1 if 𝑡 ∈ CD (𝐴)
0 otherwise

. (15)

It holds

mD (𝑔𝐴) =
1

|D|
∑︁
𝑡 ∈D

𝑔𝐴 (𝑡) =
|CD (𝐴) |
|D| = gD (𝐴) .

Let now S = {𝑡1, . . . , 𝑡ℓ } be a collection of transactions sampled uniformly and independently at

random with replacement from D. It holds

mS (𝑔𝐴) =
1

ℓ

ℓ∑︁
𝑖=1

𝑔𝐴 (𝑡𝑖 ) = gS (𝐴)
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For any subgroup 𝐴 ∈ L, we define the approximate 2-quality of 𝐴 on S as

q̃(2)S (𝐴) = mS (𝑔𝐴)mS (𝜌𝐴) = gS (𝐴)q̃(1)S (𝐴) .

As was the case for 𝑝 = 1, it holds q̃(2)S (𝐴) ≠ q(2)S (𝐴).
The following lemma shows how a bound on the deviations of the values taken by the functions

in G on S from their values on D, together with a bound on the deviations of the approximate

1-qualities on S of all subgroups, give a bound to the approximate 2-qualities on S of all subgroups.

Lemma 4.14. Let 𝜀 ∈ (0, 1). If

(1) sup𝐴∈L

���q̃(1)S (𝐴) − q(1)D (𝐴)��� ≤ √︁
1 + 𝜀/4 − 1; and

(2) sup𝐴∈L |gS (𝐴) − gD (𝐴) | ≤
√︁
1 + 𝜀/4 − 1,

then
sup

𝐴∈L

���q̃(2)S (𝐴) − q(2)D (𝐴)��� ≤ 𝜀

4

.

Proof. We show the proof for a more general case. For any 𝜂q and 𝜂g, assume it holds

(1) sup𝐴∈L

���q̃(1)S (𝐴) − q(1)D (𝐴)��� ≤ 𝜂q; and

(2) sup𝐴∈L |gS (𝐴) − gD (𝐴) | ≤ 𝜂g .

From the above, it holds, for any 𝐴 ∈ L,

q̃(2)S (𝐴) = gS (𝐴)q̃(1)S (𝐴) ≤ (gD (𝐴) + 𝜂g)
(
q(1)D (𝐴) + 𝜂q

)
≤ q(2)D (𝐴) + q

(1)
D (𝐴)𝜂g + gD (𝐴)𝜂q + 𝜂g𝜂q

≤ q(2)D (𝐴) + 𝜂g + 𝜂q + 𝜂g𝜂q . (16)

Additionally, again from the hypothesis, for any 𝐴 ∈ L it holds

q̃(2)S (𝐴) = gS (𝐴)q̃(1)S (𝐴) ≥ (gD (𝐴) − 𝜂g)
(
q(1)D (𝐴) − 𝜂q

)
≥ q(2)D (𝐴) − q

(1)
D (𝐴)𝜂g − gD (𝐴)𝜂q + 𝜂g𝜂q

≥ q(2)D (𝐴) − 𝜂g − 𝜂q − 𝜂g𝜂q . (17)

Thus, by combining, we obtain

sup

𝐴∈L

���q̃(2)S (𝐴) − q(2)D (𝐴)��� ≤ 𝜂g + 𝜂q + 𝜂g𝜂q .

The thesis follows by setting 𝜂q = 𝜂g =
√︁
1 + 𝜀/4 − 1. □

This lemma sheds light on how to obtain 𝜀-approximations of TOP2 (𝑘,D) from a sample S: the
sample must offer simultaneous guarantees on two family of functions, P and G. We discussed the

case for family P when presentingMiSoSouP-1, so we now focus on G. An application of the union

bound will ensure the simultaneous guarantees.

4.2.1 Loose bounds to the sufficient sample size. Similarly to what we did in Sect. 4.1.3, we show in

Thm. 4.15 a loose upper bound to the sample size needed to obtain an 𝜀-approximation to TOP2 (𝑘,D)
from a sample S. This bound is obtained through an additional application of Hoeffding’s inequality

to bound the deviation of the estimation of the generality from its expectation, and an application

of the union bound.
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Theorem 4.15. Let 𝛿 ∈ (0, 1), 𝜀 ∈ (0, 1), and 𝑘 ≥ 1. Let

𝜉 =
√︁
1 + 𝜀/4 − 1 .

With probability at least 1 − 𝛿 , if S is a collection of

|S| ≥ 1

𝜉2

(
ln |L| + ln 4

𝛿

)
(18)

transactions sampled uniformly at random with replacement from D, then

𝐵̃ =

{(
𝐴, q̃(2)S (𝐴)

)
: q̃(2)S (𝐴) +

𝜀

2

≥ r̃(2)S (𝑘)
}

is an 𝜀-approximation top TOP2 (𝑘,D).

Proof (Sketch). With probability at least 1 − 𝛿 it holds simultaneously that

sup

𝐴∈L
|q̃(1)S (𝐴) − q

(1)
D (𝐴) | ≤ 𝜉

and

sup

𝐴∈L
|gS (𝐴) − gD (𝐴) | ≤ 𝜉 .

An application of Lemma 4.14 with 𝜂g = 𝜂q = 𝜉 concludes the proof. □

4.2.2 The algorithm. Consider a rangeset Rg containing a range

𝑅𝐴 = {𝑡 ∈ D : 𝐴 ∈ 𝑡}
for each 𝐴 ∈ L appearing in at least one transaction of D.

As shown by Riondato and Vandin [28, Sect. 4], the VC-dimension of this rangeset is also upper

bounded by ⌊log
2
𝑑⌋ + 1, for 𝑑 as in Thm. 4.4. An equivalent of Thm. 3.4 also holds for families of

binary functions with bounded VC-dimension, with the same sample size as in (2), and therefore

relates the sample size of S with the maximum deviation from the second condition of Lemma 4.14.

We are now ready to describeMiSoSouP-2. The input is the same tuple (𝜀, 𝛿, 𝑘,D) as inMiSo-
SouP-1. After creating a sample S of size

𝑆 =
1(√︁

1 + 𝜀/4 − 1
)
2

(
⌊log

2
𝑑⌋ + 1 + ln 2

𝛿

)
, (19)

MiSoSouP-2 runs on S a modified variant of an exact algorithm for subgroup discovery that uses

q̃(2) as the interestingness measure. Let r̃(2)S (𝑘) be the top-𝑘 highest approximate 2-quality on S,
ties broken arbitrarily. The output set B is defined as

B =

{(
𝐴, q̃(2)S (𝐴)

)
: q̃(2)S (𝐴) +

𝜀

2

≥ r̃(2)S (𝑘)
}

.

The following theorem states the guarantees of MiSoSouP-2.

Theorem 4.16. With probability at least 1 − 𝛿 (over its runs),MiSoSouP-2 outputs an 𝜀-approxi-
mation to TOP2 (𝑘,D).

sketch. An application of the union bound and of Theorem 3.4 and its corresponding version

for VC-dimension gives that the probability that S satisfies the hypothesis of Lemma 4.6 is at least

1 − 𝛿 . When that is the case, then the thesis of that lemma holds, i.e.,

sup

𝐴∈L

���q̃(2)S (𝐴) − q(2)D (𝐴)��� ≤ 𝜀

4

.

From here, the proof continues essentially as the one for Theorem 4.12. □
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4.3 MiSoSouP for 1/2-quality
We now presentMiSoSouP-1/2, the variant of MiSoSouP for computing an approximation of the

top-𝑘 subgroups in D w.r.t. 1/2-quality and with generality gD (𝑌 ) ≥ 𝜎 , where 𝜎 is a user-defined

threshold. Let L𝜎 be the set of subgroups 𝑌 in L with gD (𝑌 ) ≥ 𝜎 . Assume to rank the subgroups

in L𝜎 in decreasing order according to their 1/2-quality in D, ties broken arbitrarily. Let 𝑘 > 0 be

an integer and let r(1/2)D (𝑘) be the 𝑝-quality of the 𝑘-th subgroup in the ranking. We then define

TOP1/2 (𝑘, 𝜎,D) =
{
𝑌 ∈ L𝜎 : q(1/2)D (𝑌 ) ≥ r(1/2)D (𝑘)

}
.

The additional constraint on the generality of the subgroups is needed for technical purposes of

the analysis. Other algorithms based on sampling for computing approximations of the original set

TOP1/2 (𝑘,D) [30] do not require this additional constraint but they also do not actually offer the

promised quality guarantees (see App. A).

The guarantees offered by MiSoSouP-1/2 take into account the additional constraint as follows.

Definition 4.17. Let 𝜀 ∈ (0, 3/4𝜎). A 𝜀-approximation to the set TOP1/2 (𝑘, 𝜎,D) is a set B of pairs

(𝑌, 𝑞𝑌 ) where 𝑌 is a subgroup and:

(1) for any 𝑌 ∈ TOP1/2 (𝑘, 𝜎,D), there is a (𝑌, 𝑞𝑌 ) ∈ B;
(2) there is no pair (𝑌, 𝑞𝑌 ) ∈ B such that 𝑌 ∈ L𝜎 and q(1/2)D (𝑌 ) < 1

4
r(1/2)D (𝑘) − 𝜀;

(3) there is no pair (𝑌, 𝑞𝑌 ) ∈ B such that gD (𝑌 ) < 𝜎 − 𝜀/2;
(4) for each pair (𝑌, 𝑞𝑌 ) ∈ B with 𝑌 ∈ L𝜎 ,

1√
2

𝑞𝑌 − 𝜀/2 ≤ q(1/2)D (𝑌 ) ≤ 2𝑞𝑌 + 𝜀/2.

As for 𝑝 = 1, 2, an 𝜀-approximation can be used as a set of candidates for TOP1/2 (𝑘, 𝜎,D), as it
contains a pair (𝑌, 𝑞𝑌 ) for each subgroup 𝑌 in this set.

The following lemma shows that, similarly to the 2-quality, a bound to the approximate 1/2-

qualities on S, for subgroups 𝑌 in L𝜎 , is obtained by combining a bound on the deviations of the

values taken by the functions in G (defined in Sect. 4.2) on S from their values onD, together with

a bound on the deviations of the approximate 1-qualities on S of all subgroups in L𝜎 and a minor

requirement on the relationship between 𝜎 and 𝜀.

Lemma 4.18. If

(1) sup𝑌 ∈L𝜎
|gS (𝑌 ) − gD (𝑌 ) | ≤ 𝜀

4
; and

(2) sup𝑌 ∈L𝜎

���q̃(1)S (𝑌 ) − q(1)D (𝑌 )��� ≤ 𝜀
√
𝜎

4
; and

(3) 𝜀 ≤ 3

4
𝜎

then

(1) sup𝑌 ∈L𝜎

���q̃(1/2)S (𝑌 ) − 2q(1/2)D (𝑌 )
��� ≤ 𝜀

2
; and

(2) sup𝑌 ∈L𝜎

���q(1/2)D (𝑌 )/
√
2 − q̃(1/2)S (𝑌 )

��� ≤ 𝜀
2
.
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Proof. We prove the general case for positive reals 𝜂q and 𝜂g < 3/4. Assume sup𝑌 ∈L𝜎
|gS (𝑌 ) −

gD (𝑌 ) | ≤ 𝜂g, sup𝑌 ∈L𝜎

���q̃(1)S (𝑌 ) − q(1)D (𝑌 )��� ≤ 𝜂q. From the hypothesis it holds, for any 𝑌 ∈ L𝜎 ,

q̃(1/2)S (𝑌 ) = q̃(1)S (𝑌 )/
√︁
gS (𝑌 ) ≤

q(1)D (𝑌 ) + 𝜂q√︁
gD (𝑌 ) − 𝜂g

≤
q(1)D (𝑌 )√︁
gD (𝑌 ) − 𝜂g

+
𝜂q√︁

gD (𝑌 ) − 𝜂g

≤ 2q(1/2)D (𝑌 ) + 2
𝜂q√︁
gD (𝑌 )

≤ 2q(1/2)D (𝑌 ) + 2
𝜂q√
𝜎
,

where the third inequality follows from

gD (𝑌 ) − 𝜂g ≥ gD (𝑌 ) −
3

4

gD (𝑌 ) =
gD (𝑌 )

4

.

In addition, again from the hypothesis, for any 𝑌 ∈ L𝜎 it holds

q̃(1/2)S (𝑌 ) = q̃(1)S (𝑌 )/
√︁
gS (𝑌 ) ≥

q(1)D (𝑌 ) − 𝜂q√︁
gD (𝑌 ) + 𝜂g

≥
q(1)D (𝑌 )√︁
gD (𝑌 ) + 𝜂g

−
𝜂q√︁

gD (𝑌 ) + 𝜂g

≥
q(1)D (𝑌 )√
2

√︁
gD (𝑌 )

−
𝜂q√︁
gD (𝑌 )

≥ 1

√
2

q(1/2)D (𝑌 ) −
𝜂q√
𝜎
,

where the third inequality follows from 𝜂g ≤ 3

4
gD (𝑌 ).

The thesis follows by setting 𝜂g =
𝜀
4
and 𝜂q =

𝜀
√
𝜎

4
. □

4.3.1 The algorithm. We now describe MiSoSouP-1/2. The input is a tuple (𝜀, 𝛿, 𝑘,D, 𝜎), where
𝜀, 𝛿, 𝑘 , and D are the same as inMiSoSouP-1 andMiSoSouP-2, while 𝜎 is a minimum generality

threshold for the subgroups of interest. In addition, MiSoSouP-1/2 requires that 𝜀 ≤ 3

4
𝜎 .

After creating a sample of S of size

𝑆 =
16

𝜀2𝜎

(
⌊log

2
𝑑⌋ + 1 + ln 2

𝛿

)
,

MiSoSouP-1/2 runs on S a variant of an exact algorithm for subgroup discovery that uses q̃(1/2) as
interesting measure. Let r̃(1/2)S (𝑘) be the top-𝑘 highest approximate 1/2-quality on S for groups 𝑌

with gS (𝑌 ) ≥ 𝜎 − 𝜀
4
, ties broken arbitrarily. The output set B is defined as

B =

{(
𝑌, q̃(1/2)S (𝑌 )

)
: gS (𝑌 ) ≥ 𝜎 − 𝜀/4,

q̃(1/2)S (𝑌 ) + (𝜀/2) ≥ r̃(1/2)S (𝑘)
}

.

The following establishes the theoretical guarantees of MiSoSouP-1/2.
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Table 3. Characteristics of the datasets

Dataset Size Attributes Max. Length

Car 6912 ×104 6 4

Mushroom 32496 ×104 22 4

Tic-Tac-Toe 3832 ×104 9 5

Theorem 4.19. With probability at least 1 − 𝛿 (over its runs), MiSoSouP-1/2 outputs an 𝜀-
approximation to TOP1/2 (𝑘, 𝜎,D).

Sketch. The proof follows the same lines as the proof for Thm. 4.16, but leveraging on Lemma 4.18

instead of Lemma 4.6. □

5 EXPERIMENTAL EVALUATION
We now discuss our experimental evaluation to assess the performances of MiSoSouP.

5.1 Goals
Our experiments have two goals: 1. evaluate the speed-up of MiSoSouP w.r.t. sampling-based

approximation algorithms offering the same quality guarantees; and 2. evaluate the quality of the

approximations returned by MiSoSouP, in terms of the accuracy of the estimates of the quality of

the returned subgroups, and of the number of returned subgroups.

5.2 Baselines
We compare the performances of MiSoSouP against a class UB of baseline algorithms.

7
We use

UB-1 and UB-2 to denote the variant of UB for 1- and 2-quality respectively. LikeMiSoSouP, UB
computes, with probability at least 1− 𝛿 , an 𝜀-approximation to TOP𝑝 (𝑘,D) by analyzing a sample

of the dataset. The only difference between MiSoSouP-1 (resp. MiSoSouP-2) and UB-1 (resp. UB-2)
is that UB-1 (resp. UB-2) uses, as sample size, the r.h.s. of (9) (resp. of (18)). In other words, the

pseudocode for UB-1 would be very similar to the one presented in Alg. 1 forMiSoSouP-1, with
difference only in the computation of the sample size 𝑆 (line 1 and line 2), in the sense that on

line 1, UB-1 would have to compute the number of subgroups in L that actually appear in D (or

an upper bound to such number) and in line 2, UB-1 would compute the sample size 𝑆 using (9).

The rest of the code would not change w.r.t.MiSoSouP-1, and neither would the input or output

(including the guarantees). In our experimental evaluation we consider description languages of

conjunctions of equality conditions on up to𝑚𝑎𝑥𝑙𝑒𝑛 attributes, for some value𝑚𝑎𝑥𝑙𝑒𝑛 (see Table 3).

In this case, an upper bound to the number of subgroups in L that appear in D can be computed

by considering the size of the (effective) domains of the columns in the dataset, and taking the sum,

over all 𝑟 -subsets 𝐶 of columns, for 𝑟 from 1 to𝑚𝑎𝑥𝑙𝑒𝑛, of the products of the sizes of the column

domains in 𝐶 . Computing the sizes of the column domains requires a linear scan of the dataset.

Despite the fact that this step can be relatively expensive and its cost grows with the size of the

dataset, we do not include the time for such computation in the reported runtime of UB, therefore
favoring UB in our comparisons. MiSoSouP relies on (10) to compute the upper bound 𝑑 to the

pseudodimension used in (14) to obtain its sample size. The cost of evaluating the r.h.s. of (10) is

essentially nil, as all values are known by MiSoSouP, since L and thus 𝑐 are fixed in advance, and

the number of columns of D is an immediately available quantity.

7
The UB algorithms were not presented before in the literature. We introduce them only for comparison withMiSoSouP,
which, as we will see, offers several practical advantages.
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We do not compareMiSoSouP with algorithms that mine the whole dataset and output the exact

collection TOP𝑝 (𝑘,D) becauseMiSoSouP (and also UB) have sample sizes that are independent on

the size of the dataset, while an exact algorithm would take time proportional to this quantity. As a

result, on modern-sized datasets, an exact algorithm is always much slower than a sampling-based

algorithm. We also do not to compare against GSS [30] because the algorithm does not actually

offer the claimed guarantees (see App. A), and an implementation is not available.

5.3 Datasets and languages
We use datasets from the UCI repository [17]. Since these datasets are quite small for today’s

standards, we replicate them 20,000 times (i.e., each transaction is copied 20,000 times) and then

shuffle the order of the transactions in the replicated copy. This way, we obtain significantly larger

datasets while preserving the distribution of the 𝑝-qualities of the subgroups appearing in the

original datasets. This approach does not change the search space of any algorithm and does not

give any advantage toMiSoSouP over UB. Table 3 shows the descriptive statistics of the datasets
we used. We consider the description language L of subgroups of up to “Max. Length” conjunctions

of equality conditions.

5.4 Implementation and environment
We implemented MiSoSouP and UB in C++17. Our code is available from http://matteo.rionda.

to/software/misosoup.tbz2. The implementation uses a simple exhaustive search algorithm for

extracting the subgroups from the sample. Any algorithm can be used for this step, we just found it

more practical to write our own implementation than to modify an existing implementation of a

more efficient algorithm. We run our experiments on a cluster of GNU/Linux machines, except for

the timing experiments, which were performed on a machine with an AMD Phenom
TM

II X4 955

processor and 16GB of RAM, running FreeBSD 12.

5.5 Parameters
We report results for 𝑘 ∈ {10, 50, 100, 200, 500, 1000, 2000}, 𝜀 ∈ {0.05, 0.02, 0.01, 0.0075},8 and for

𝛿 = 0.1. We tested different values for 𝛿 , but given that both MiSoSouP and UB have (the same)

logarithmic dependence on 𝛿 , varying 𝛿 has limited quantitative effect and no qualitative effect. We

runMiSoSouP and UB five times for each combination of parameters: the results were extremely

stable and we report them for a randomly chosen run among the five.

5.6 Results for 𝑝 = 1

We first show the results on runtime and sample sizes (Sect. 5.6.1), then discuss the accuracy of the

estimates of the 1-qualities obtained by MiSoSouP-1 (Sect. 5.6.2), and finally analyze the number of

false positives it reports (Sect. 5.6.3).

5.6.1 Sample size reduction and speed-up. We compare the number of samples used byMiSoSouP-1
and by UB-1 as 𝜀 varies. In both cases, the sample size is independent from 𝑘 : 𝑘 enters into play

only when computing the final output, so it can be chosen after the “sampling phases” of the

algorithms have run. The results are presented in the 3
rd
and 4

th
column from the left of Table 4.

W.r.t. the whole dataset (whose size is reported in Table 3),MiSoSouP-1 looks at a small fraction

of the transactions, and this quantity does not grow as the dataset grows, which is one of the main

8
With the exception of 𝜀 = 0.0075 for the Tic-Tac-Toe dataset for 𝑝 = 2, because runningMiSoSouP-2 with these parameters

would take too long.
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Table 4. Sample size and runtime evaluation for MiSoSouP-1

Dataset 𝜀 |S| Reduction w.r.t. UB-1 Runtime (s) Reduction w.r.t. UB-1

Car

0.05 53137

-25.07%

1.50 -1.5%

0.02 332104 2.13 -10.55%

0.01 1328414 4.42 -17.68%

0.0075 2361625 6.67 -20.16%

Mushroom

0.05 104337

-11.98%

88.66 -8.64%

0.02 652104 467.97 -13.86%

0.01 2608414 1816.05 -11.45%

0.0075 4637180 3274.01 -10.70%

Tic-Tac-Toe

0.05 72337

-17.35%

2.34 -12.96%

0.02 452104 9.72 -16.66%

0.01 1808414 35.36 -17.47%

0.0075 3214958 59.31 -19.72%

advantages of sampling-based approaches.
9 MiSoSouP-1 achieves a very large reduction in the

sample size w.r.t. UB-1 (only a single number is reported for each dataset because the two sample

sizes have the same dependency on 𝜀 and 𝛿 , and do not depend on 𝑘). The reduction is extremely

significant because, especially when 𝜀 is small, UB-1 would require to analyze a sample larger than
the original dataset, defeating the whole purpose of sampling, whileMiSoSouP-1would still shine.10

Hence,MiSoSouP-1 can be used with success in situations where UB-1 would be useless. There are

other scenarios where UB-1 would not work but MiSoSouP-1 would: if given just a sample and

no information on the size of the language, UB-1 would not be able to compute the sample size,

whileMiSoSouP-1 would have no issues. Thus,MiSoSouP-1 requires fewer transactions than UB-1,
while being more flexible.

The runtime of MiSoSouP-1 and the reduction over UB-1 are reported in the 5
th
and 6

th
columns

of Table 4. We remark once again that the runtime of UB-1 did not include the time to compute an

upper bound to the size of language, which on large datasets is significant. Thus the improvement

of MiSoSouP-1 over UB-1 is actually even larger than reported. At small sample sizes (i.e., large

values of 𝜀), both algorithms have fixed costs that dominate over the part of the running time that

depends on the size of the sample, thus the reduction in MiSoSouP-1’s runtime w.r.t. UB-1’s is not
proportional to the reduction in the sample size. The sample-size-dependent costs dominate when

𝜀 is small (larger sample sizes) and in these cases the speed-up becomes essentially equal to the

reduction in the sample size.

5.6.2 Accuracy. We evaluate the accuracy of the output of MiSoSouP-1 by measuring, for each

subgroup 𝐴 in the output, the absolute error on the sample S: err(𝑝)S (𝐴) =
���q̃(𝑝)S (𝐴) − q(𝑝)D (𝐴)���. The

results are reported in Table 5, where we show the minimum, 1
st
quartile, median (i.e., 2

nd
quartile),

3
rd
quartile, and maximum of this error. The quality guarantees of MiSoSouP-1 ensure that, with

probability at least 1 − 𝛿 , the absolute error is bounded by 𝜀/4 for all subgroups. A first important

9
This property of sampling-based approaches is also the reason why we did not perform evaluate the scalability of MiSoSouP
as the dataset size grows.

10
For extremely small values of 𝜀 and only moderately large datasets, MiSoSouP-1 would also require a sample size larger

than the datasets. This weakness is implicit in all sampling-based approaches, but for MiSoSouP-1, it appears at much

smaller values of 𝜀 than for UB-1.
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Table 5. Accuracy (absolute error) evaluation — 𝑝 = 1

Absolute error (×104)
Car Mushroom Tic-Tac-Toe

𝑘 𝜀
4
× 104 Min 1

st
Q Med 3

rd
Q Max Min 1

st
Q Med 3

rd
Q Max Min 1

st
Q Med 3

rd
Q Max

10

125 < 0.01 0.32 0.76 1.87 25.50 18.72 22.96 29.99 35.95 39.19 0.03 3.95 8.59 16.19 48.88

50 0.01 1.14 2.48 4.50 8.20 7.29 7.70 13.51 15.96 16.37 < 0.01 2.17 4.66 9.38 28.58

25 0.66 2.69 3.44 5.10 10.78 0.16 0.55 0.74 1.06 2.32 0.43 1.37 2.46 4.43 5.91

18.75 0.01 0.77 1.88 2.61 4.45 4.46 5.30 5.41 5.64 6.09 0.09 0.48 1.35 1.75 5.14

50

125 < 0.01 0.32 0.76 1.88 25.50 5.82 14.92 20.23 25.12 39.19 < 0.01 0.82 1.93 3.90 48.88

50 < 0.01 0.13 0.30 0.74 8.20 2.16 8.73 13.49 15.98 18.83 < 0.01 1.73 3.68 6.70 28.58

25 < 0.01 0.95 1.81 2.87 10.78 0.16 0.93 2.32 2.91 4.71 0.01 1.03 1.73 3.02 6.01

18.75 < 0.01 0.56 1.13 2.07 4.45 3.01 3.95 5.00 6.09 6.45 0.04 0.56 1.18 1.73 5.14

100

125 < 0.01 0.32 0.76 1.88 25.50 3.79 12.90 20.23 26.09 44.35 < 0.01 0.85 1.99 3.95 48.88

50 < 0.01 0.14 0.32 0.72 8.20 1.36 4.86 9.14 13.89 18.83 < 0.01 1.65 3.31 5.91 28.58

25 < 0.01 0.46 0.99 1.89 10.78 0.05 1.37 2.53 3.76 4.71 0.01 0.80 1.36 2.44 6.01

18.75 < 0.01 0.43 0.84 1.46 4.98 2.44 3.85 4.54 5.30 6.79 0.04 0.66 1.18 1.95 5.14

200

125 < 0.01 0.32 0.76 1.88 25.50 2.07 8.60 17.17 23.29 45.75 < 0.01 0.86 2.04 4.07 48.88

50 < 0.01 0.14 0.32 0.72 8.20 1.36 4.14 6.76 11.36 19.98 < 0.01 1.11 2.29 3.92 28.58

25 < 0.01 0.06 0.14 0.42 10.78 0.05 1.47 2.87 3.76 5.30 0.01 0.73 1.35 2.29 6.01

18.75 < 0.01 0.26 0.60 1.09 4.98 2.44 3.76 4.46 5.20 8.51 < 0.01 0.49 1.01 1.66 5.14

500

125 < 0.01 0.32 0.76 1.88 25.50 2.07 8.14 12.56 20.77 45.75 < 0.01 0.87 2.04 4.11 48.88

50 < 0.01 0.14 0.32 0.73 8.20 0.40 5.31 6.56 8.41 22.51 < 0.01 0.32 0.74 1.52 28.58

25 < 0.01 0.07 0.15 0.36 10.78 0.05 1.81 3.27 4.31 5.53 < 0.01 0.41 0.87 1.63 6.01

18.75 < 0.01 0.05 0.11 0.26 4.98 0.86 3.56 4.10 4.88 8.85 < 0.01 0.35 0.79 1.36 5.14

1000

125 < 0.01 0.32 0.76 1.88 25.50 0.17 8.22 13.35 21.09 45.75 < 0.01 0.87 2.04 4.11 48.88

50 < 0.01 0.14 0.32 0.73 8.20 0.40 5.63 6.56 8.45 22.86 < 0.01 0.34 0.77 1.53 28.58

25 < 0.01 0.07 0.15 0.36 10.78 0.05 2.53 4.27 4.63 7.45 < 0.01 0.32 0.68 1.21 7.86

18.75 < 0.01 0.05 0.11 0.26 4.98 0.05 3.41 3.77 4.43 8.85 < 0.01 0.29 0.64 1.11 5.14

2000

125 < 0.01 0.32 0.76 1.88 25.50 0.01 6.15 11.67 17.09 45.75 < 0.01 0.87 2.04 4.11 48.88

50 < 0.01 0.14 0.32 0.73 8.20 0.02 4.14 6.56 9.10 22.86 < 0.01 0.34 0.78 1.56 28.58

25 < 0.01 0.07 0.15 0.36 10.78 0.02 1.73 3.28 4.38 7.45 < 0.01 0.17 0.39 0.76 7.86

18.75 < 0.01 0.05 0.11 0.26 4.98 < 0.01 2.59 3.56 4.30 8.85 < 0.01 0.21 0.44 0.80 5.14

result is that the above was true in all the thousands of runs of MiSoSouP-1 we performed, i.e.,

not just with probability 1 − 𝛿 . Hence MiSoSouP-1 has, in practice, even higher confidence than it

guarantees theoretically. We will further comment later on this aspect.

We can see that not only the maximum absolute error was approximately between two to seven

times smaller than the maximum allowed (𝜀/4), but the majority of the distribution of the error (over

the subgroups) is highly concentrated around values that are often orders of magnitude smaller,

with the median being at times even more than 100 times smaller than 𝜀/4. Additionally we see

how, as 𝜀 decreases, the distribution of the error becomes more concentrated, with the maximum

values decreasing faster than the third quartiles and the medians.

A possible explanation for the fact that the estimation of the 1-qualities is much better than what

is guaranteed by the theory is that the analysis uses an upper bound to the pseudodimension, which

itself is a worst-case measure of complexity. This looseness is somewhat inevitable, but it suggests

that there is room for improvement in the analysis. We plan to investigate the use of Rademacher

averages [14] to obtain tighter sample-dependent bounds to the deviations of the sample qualities

from their exact values.

5.6.3 Output properties. The set of subgroups returned byMiSoSouP-1 is a superset of TOP𝑝 (𝑘,D).
This was always the case in all the runs, so the recall of MiSoSouP-1 is, in practice, 100%.MiSoSouP-
1 therefore effectively exceeds the theoretical guarantees it offers. As for the precision, we must

remark that a sampling-based algorithm can obviously not guarantee 100% precision, especially if

it gives 100% recall like MiSoSouP-1 does.
Nevertheless, MiSoSouP-1 guarantees that False Positives (FP), i.e., subgroups not in TOP𝑝 (𝑘,D)

that may be included in the output, can only be among those subgroups with 1-quality in D at
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least r(1)D (𝑘) − 𝜀, i.e., at most 𝜀 less than the 1-quality of the top-𝑘-th subgroup in D. The number

of these “acceptable” FP depends on the distribution of the 1-qualities in the dataset, and cannot be

controlled by the algorithm. Thus, the precision may be very low if there are many (potentially

≫ 𝑘) subgroups that would be acceptable FP, and these FP are the price to pay for the speed-up in

analyzing the dataset. It is arguable that in these cases the exact choice of 𝑘 becomes somewhat

arbitrary, because there are many subgroups with 𝑝-qualities very close to each other. In any case,

the output of MiSoSouP-1 is a superset of TOP1 (𝑘,D) and can be refined to obtain this set with a

fast linear scan of the dataset.

We report in Table 6, the number of FP in the output and to what percentage of the acceptable FP

that number corresponds to. As expected, for a fixed value of 𝑘 , the number of FP included in the

output decreases as 𝜀 becomes smaller, but notice that the percentage may not decrease because

the set of acceptable FP changes with 𝜀. The absolute number of FP tends to grow with 𝑘 , because

the number of acceptable FP also tends to grow with 𝑘 , which is a consequence of the power-law

distribution of the qualities of the subgroups.

For the Car dataset, the distribution of the FP is denser than in the other datasets, therefore

the percentages are often high. It is in such cases that the choice of 𝑘 reveals its arbitrary nature

w.r.t. the qualities of the subgroups considered of interest, and this nature is made visible but not

caused by the properties of MiSoSouP-1.
In the end, the amount of FP is either a small number (either in absolute terms or relatively to 𝑘)

or a relatively small fraction of the total number of acceptable FP. This fact can be explained by the

“excessive” accuracy of MiSoSouP-1 in estimating the 1-quality of the subgroups, as discussed in

Sect. 5.6.2. As mentioned,MiSoSouP-1 gives no guarantees that only a small subset of the acceptable

FP would be included in the output, so the fact that in most cases less than half of them are actually

present is a witness to the good performances of the algorithm.

5.7 Results for 𝑝 = 2

We now discuss the results for 𝑝 = 2. Most of the results are qualitatively similar to those for 𝑝 = 1,

so we only give additional details where the results differ.

5.7.1 Sample size reduction and speed-up. The results for the sample size and the runtime are

reported in Table 7. We compare the performances of MiSoSouP-2 with those of UB-2, which
uses (18) to compute the sample size. We can see that the improvement of MiSoSouP-2 over UB-2
in terms of the used sample size is similar to the case for 𝑝 = 1. In absolute, the sample sizes are

actually quite larger than those used by MiSoSouP-1 and UB-1, due to the different dependency on

𝜀. When comparing the runtimes, it is now even clearer than in the case for 𝑝 = 1 how the runtime

improvement converges fast to the improvement in the sample size.

5.7.2 Accuracy. In Table 8 we present the statistics on the absolute error in the estimation of the

2-quality of the subgroups in the output of MiSoSouP-2. A comparison of the Max. and the 𝜀/4
columns reveals that MiSoSouP-2 is between 4 and 13 times more accurate than guaranteed, even

more than MiSoSouP-1. The whole distribution of the error is actually more concentrated towards

zero than it was the case for 𝑝 = 1. This fact can be explained by the additional looseness in the

derivation of the sample size used by MiSoSouP-2.

5.7.3 Output properties. We report the results on the False Positives included in the output of

MiSoSouP-2 in Table 9. Qualitatively, they are the same as for the 𝑝 = 1 case, so we do not comment

them further.
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Table 6. Output evaluation — 𝑝 = 1

Car Mushroom Tic-Tac-Toe

𝜀 𝑘 |TOP1 (𝑘,D) | FP

% of all

Acceptable FP |TOP1 (𝑘,D) | FP

% of all

Acceptable FP |TOP1 (𝑘,D) | FP

% of all

Acceptable FP

0.05

10 10 3218 99.41 10 29 19.72 11 386 1.01

50 54 3188 99.84 50 120 22.64 53 28100 73.39

100 105 3139 99.90 100 232 25.86 107 36738 96.06

200 211 3034 99.93 200 399 32.83 207 37887 99.31

500 549 2696 99.93 546 764 34.80 509 37778 99.82

1000 1340 1905 99.90 1013 850 17.63 1003 37302 99.86

2000 2357 888 99.78 2004 4030 15.26 2017 36312 99.93

0.02

10 10 74 2.35 10 14 56.00 11 23 11.50

50 54 2599 81.58 50 48 57.83 53 230 5.96

100 105 3051 97.26 100 57 40.42 107 373 1.38

200 211 2970 97.99 200 141 51.64 207 2058 5.57

500 549 2679 99.48 546 361 59.66 509 29526 78.50

1000 1340 1900 99.74 1013 284 42.83 1003 34868 93.69

2000 2357 883 99.44 2004 949 31.96 2017 35090 96.75

0.01

10 10 15 20.00 10 2 14.28 11 6 27.27

50 54 157 6.04 50 17 36.95 53 54 26.21

100 105 551 18.06 100 26 45.61 107 101 27.01

200 211 2392 80.54 200 46 34.07 207 245 13.02

500 549 2604 97.20 546 67 18.55 509 2301 7.76

1000 1340 1841 96.89 1013 129 41.88 1003 6486 18.61

2000 2357 824 93.32 2004 455 48.50 2017 21745 61.92

0.0075

10 10 11 40.74 10 2 100.00 11 4 66.67

50 54 77 13.25 50 8 34.78 53 53 58.89

100 105 301 11.81 100 26 78.78 107 36 19.15

200 211 609 20.69 200 35 35.00 207 186 29.43

500 549 2376 90.27 546 47 16.60 509 1160 14.10

1000 1340 1816 96.19 1013 92 46.23 1003 3062 11.70

2000 2357 799 91.73 2004 246 36.71 2017 8947 27.01

Table 7. Sample size and runtime evaluation for MiSoSouP-2

Dataset 𝜀 |S| Reduction w.r.t. UB-2 Runtime (s) Reduction w.r.t. UB-2

Car

0.05 213873 -29.49% 2.19 -8.07%

0.02 1331733 5.86 -20.20%

0.01 5320295 17.46 -28.43%

0.0075 9455351 30.30 -25.10%

Mushroom

0.05 419951 -15.15% 573.03 -13.29%

0.02 2614931 3446.71 -15.11%

0.01 10446693 13562.23 -14.85%

0.0075 18566105 23857.04 -15.03%

Tic-Tac-Toe

0.05 291152 -21.34% 11.52 -18.04%

0.02 1812932 65.82 -20.50%

0.01 7242694 244.89 -20.02%

6 CONCLUSIONS
We introducedMiSoSouP, the first family of algorithms based on random sampling that compute

probabilistically-guaranteed high-quality approximations of the collection of the top-𝑘 most inter-

esting subgroups in a dataset, according to different popular interestingness measures. To achieve

this result, we show a novel formulation of 1-quality as an average of a carefully tailored function,

which we then extend to 2-quality and 1/2-quality, in order to cover important practical uses and

showcase the flexibility of our approach. Our analysis relies on pseudodimension, a fundamental
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Table 8. Accuracy (absolute error) evaluation — 𝑝 = 2

Absolute error (×104)
Car Mushroom Tic-Tac-Toe

𝑘 𝜀
4
× 104 Min 1

st
Q Med 3

rd
Q Max Min 1

st
Q Med 3

rd
Q Max Min 1

st
Q Med 3

rd
Q Max

10

125 < 0.01 0.20 0.45 1.07 38.30 2.20 10.17 12.86 14.45 20.21 < 0.01 < 0.01 0.01 0.02 10.77

50 0.02 1.27 2.85 5.47 9.30 0.05 0.96 1.48 2.41 4.27 < 0.01 < 0.01 < 0.01 0.01 3.73

25 0.18 1.15 1.99 3.10 5.80 0.01 0.21 0.36 0.43 0.58 0.01 0.13 0.24 0.39 1.87

18.75 0.24 0.69 1.78 2.94 5.46 0.22 0.44 0.68 0.83 1.17

50

125 < 0.01 0.20 0.45 1.10 38.30 1.08 8.19 12.80 13.69 20.21 < 0.01 < 0.01 0.01 0.02 10.77

50 < 0.01 0.07 0.16 0.38 9.30 0.05 1.47 2.41 3.08 4.47 < 0.01 < 0.01 < 0.01 0.01 3.73

25 < 0.01 0.56 1.33 2.14 6.97 0.01 0.09 0.36 0.49 1.6 < 0.01 < 0.01 < 0.01 < 0.01 1.875

18.75 0.01 0.59 1.34 2.06 5.46 0.22 0.45 0.71 1.00 1.66

100

125 < 0.01 0.20 0.45 1.10 38.30 1.08 5.60 10.68 13.41 20.21 < 0.01 < 0.01 0.01 0.02 10.77

50 < 0.01 0.07 0.17 0.40 9.30 0.05 1.41 1.97 2.71 4.72 < 0.01 < 0.01 < 0.01 0.01 3.73

25 < 0.01 0.30 0.68 1.29 6.97 0.01 0.30 0.51 0.80 1.65 < 0.01 < 0.01 < 0.01 < 0.01 1.87

18.75 0.01 0.35 0.75 1.48 5.46 0.22 0.74 1.07 1.29 1.74

200

125 < 0.01 0.20 0.45 1.10 38.30 1.08 4.75 5.89 12.88 20.21 < 0.01 < 0.01 0.01 0.02 10.77

50 < 0.01 0.07 0.17 0.41 9.30 0.05 1.48 1.97 2.65 4.72 < 0.01 < 0.01 < 0.01 0.01 3.73

25 < 0.01 0.04 0.08 0.18 6.97 0.01 0.23 0.49 0.68 1.65 < 0.01 < 0.01 < 0.01 < 0.01 1.87

18.75 < 0.01 0.20 0.45 0.86 5.46 0.22 0.76 1.07 1.29 1.74

500

125 < 0.01 0.20 0.45 1.10 38.30 < 0.01 1.43 2.57 4.81 20.21 < 0.01 < 0.01 0.01 0.02 10.77

50 < 0.01 0.07 0.17 0.41 9.30 0.01 0.17 0.32 1.68 4.72 < 0.01 < 0.01 < 0.01 0.01 3.73

25 < 0.01 0.04 0.09 0.20 6.97 0.01 0.24 0.51 0.88 2.02 < 0.01 < 0.01 < 0.01 < 0.01 1.87

18.75 < 0.01 0.03 0.07 0.15 5.46 0.05 0.79 1.08 1.25 1.74

1000

125 < 0.01 0.20 0.45 1.10 38.30 < 0.01 0.04 0.09 0.26 20.21 < 0.01 < 0.01 0.01 0.02 10.77

50 < 0.01 0.07 0.17 0.41 9.30 0.01 0.18 0.42 1.60 4.72 < 0.01 < 0.01 < 0.01 0.01 3.73

25 < 0.01 0.04 0.09 0.20 6.97 0.01 0.42 0.60 0.68 2.02 < 0.01 < 0.01 < 0.01 < 0.01 1.87

18.75 < 0.01 0.03 0.07 0.16 5.46 0.03 1.03 1.09 1.15 1.74

2000

125 < 0.01 0.20 0.45 1.10 38.30 < 0.01 0.04 0.09 0.26 31.26 < 0.01 < 0.01 0.01 0.02 10.77

50 < 0.01 0.07 0.17 0.41 9.30 < 0.01 0.09 0.28 0.50 4.72 < 0.01 < 0.01 < 0.01 0.01 3.73

25 < 0.01 0.04 0.09 0.20 6.97 < 0.01 0.19 0.44 0.64 2.02 < 0.01 < 0.01 < 0.01 < 0.01 1.87

18.75 < 0.01 0.03 0.07 0.16 5.46 < 0.01 0.31 0.55 1.09 1.74

Table 9. Output evaluation — 𝑝 = 2

Car Mushroom Tic-Tac-Toe

𝜀 𝑘 |TOP1 (𝑘,D) | FP

% of all

Acceptable FP |TOP1 (𝑘,D) | FP

% of all

Acceptable FP |TOP1 (𝑘,D) | FP

% of all

Acceptable FP

0.05

10 10 6195 98.95 10 140 22.01 13 38343 100.00

50 54 6212 99.92 51 386 21.53 51 38305 100.00

100 105 6161 99.92 103 490 5.59 107 38249 100.00

200 211 6058 99.97 201 672 0.67 213 38143 100.00

500 500 5769 99.97 501 4191 4.21 515 37841 100.00

1000 1019 5250 99.96 1010 412867 417.08 1001 37355 100.00

2000 2808 3461 99.94 2000 422868 431.50 2045 36311 100.00

0.02

10 10 60 0.97 10 24 32.88 13 38317 99.93

50 54 5623 90.55 51 54 18.82 51 38301 99.99

100 105 6075 98.60 103 235 65.10 107 38245 99.99

200 211 5995 99.01 201 209 62.02 213 38139 99.99

500 500 5752 99.76 501 837 44.22 515 37839 99.99

1000 1019 5245 99.90 1010 856 11.41 1001 37355 100.00

2000 2808 3456 99.86 2000 9503 9.70 2045 36311 100.00

0.01

10 10 17 22.67 10 19 79.17 13 40 0.10

50 54 164 2.92 51 18 38.30 51 38273 99.93

100 105 789 12.99 103 108 41.70 107 38233 99.97

200 211 5420 90.42 201 99 47.60 213 38127 99.97

500 500 5677 98.70 501 145 17.32 515 37827 99.97

1000 1019 5161 98.40 1010 486 55.16 1001 37343 99.97

2000 2808 3397 98.29 2000 1482 15.70 2045 36299 99.97

0.0075

10 10 11 40.74 10 19 100.00

50 54 74 11.42 51 12 37.50

100 105 306 5.49 103 102 63.75

200 211 1030 17.26 201 33 18.13

500 500 5448 95.50 501 97 25.94

1000 1019 5156 98.53 1010 442 71.64

2000 2808 3372 97.91 2000 952 23.29
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concept from statistical learning theory. This connection is novel for subgroup discovery. We show

upper and almost-matching lower bounds to the pseudodimension of the task, and show that it

depends on characteristics of the dataset and of the language of interest.

Our experimental evaluation shows that MiSoSouP requires much smaller sample sizes than

state-of-the-art solutions to obtain approximations with the same guarantees, therefore providing

the first viable tool to efficiently identify the most interesting subgroups for ever-more-massive

datasets.

Our algorithms hinge on defining quality measures as averages of specific functions. This

approach can likely be used in concert with Rademacher averages to design progressive-sampling

methods for subgroups discovery, as done for other mining tasks [26]. Investigating this approach

is an interesting direction for future research.
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A ON THE CORRECTNESS OF THE GSS ALGORITHM
In this section we present our concerns on the analysis of the GSS algorithm by Scheffer and

Wrobel [30]. We borrow the same notation used in [30].

A.1 Random stopping time and hypothesis sets
The proofs of [30, Lemmas 13 and 14] do not appear to be correct.

Let’s start with the proof for [30, Lemma 14] first, as it is easier to explain and it will clarify the

situation for [30, Lemma 13]. The issue is that the value 𝑖𝑚𝑎𝑥 is a random variable, and so is the

set 𝐻𝑖𝑚𝑎𝑥
, and thus its size. All these quantities are functions of the sequence of random variables

(𝑡𝑖 )𝑖≥1, where 𝑡𝑖 is the transaction sampled by the algorithm at time 𝑖 .11 In [30, Lemma 14], all these

11
To be specific, 𝑖𝑚𝑎𝑥 is a stopping time [19, Section 12.2] for the sequence of random variables (𝑡𝑖 )𝑖≥1.
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quantities are assumed to be fixed, i.e., the results are obtained conditioned on the realized values

of 𝑖𝑚𝑎𝑥 and 𝐻𝑖𝑚𝑎𝑥
. One may wish to believe that it is therefore sufficient to apply the law of total

probability [19, Thm. 1.6] over all possible values of 𝑖𝑚𝑎𝑥 and𝐻𝑖𝑚𝑎𝑥
, and given that each conditional

probability is bounded by 𝛿/2, then so is the unconditional probability. As observed by Borassi and

Natale [3, Section 3], this approach is not justified a priori. The solution presented by Borassi and

Natale [3, Section 2], although for a different problem, can only partially be adapted to GSS, as
it does not solve the problem that the set 𝐻𝑖 of hypotheses under consideration at iteration 𝑖 is a

random variable for every 𝑖 > 1. One may be tempted to try to fix the correctness of the algorithm,

at least as far as this issue is concerned, by removing the possibility for the algorithm to stop when

𝐸 (𝑖, 𝛿/(2|𝐻𝑖 |)) is less than or equal to 𝜀/2 (third condition on line 3 of the pseudocode in [30, Table

1]), and replace it with a condition that is satisfied when the number of sampled transactions is

equal to𝑀 (defined on line 2 of [30, Table 1]), but these changes would not be sufficient to guarantee

the correctness of the algorithm, due to additional issues that we discuss in App. A.2.

For more details on the topic of randomly stopped sequences of random variables, we refer the

reader to the book by De La Peña and Giné [5, Ch. 2] and for recent developments to the paper by

Zhao et al. [38].

The issue with [30, Lemma 13] is similar to the one described above: the event in the probability

on the line above [30, Equation 131] is defined conditioned on the sets 𝐻𝑖 , but this conditioning

must be justified and handled appropriately. In order to try to fix this issue, one could consider

the worst case when all the 𝐻𝑖 equal 𝐻 . Then the assumption A1 would be modified to have |𝐻 |
instead of |𝐻𝑖 | and the same modification would be made in the algorithm on lines 3.𝑒 .𝑖 and 3.𝑒 .𝑖𝑖

in [30, Table 1], and to [30, Equations 85 and 104]. Even these changes are not sufficient due to the

additional issues that we discuss in the following section.

A.2 Use of the Chernoff bounds
Scheffer andWrobel [30, Section 4.1] discuss how to use Chernoff bounds [19, Chapter 4] to compute

a probabilistic tail bound for the deviation of a relative frequency (i.e., a sample average of a 0–1

binary function) from its expectation. The function 𝐸 (𝑚,𝛿) in [30, Equation 4] gives a value such

that the probability that a sample average computed from a sample of𝑚 transactions deviates from

its expectation by more than 𝐸 (𝑚,𝛿) is at most 𝛿 , as shown in [30, Equations 5–7].

The correctness of the above statement, i.e., of the properties of 𝐸 (𝑚,𝛿) depends crucially on the

fact that the sample average is the average of𝑚 values. Such is definitively the case for the functions

presented in [30, Section 4.1], but not for the functions presented in [30, Sections 4.2, 4.3, 4.4]. This

fact is recognized by Scheffer and Wrobel [30], who develop sequences of insightful inequalities to

show how to upper bound the probability that a sample estimate of the 𝑝-quality, 𝑝 ∈ {1/2, 1, 2},
deviates from its expectations by more than some quantity with a sum of the probabilities that the

sample estimates of the generality and the usefulness deviate from their expectation by more than

some other quantities. The derivations of these upper bound are presented in [30, Equation 16–

22] for the 1-quality, [30, Equation 36–43] for the 2-quality,
12

and [30, Equation 59–67] for the

1/2-quality.

The issue in these derivations is that Scheffer and Wrobel[30] consider the sample estimate for

the unusualness (which they denote as 𝑝) as the average of a 0-1 function over the𝑚 elements in
the sample (the function is 0 if the target attribute is 0, 1 otherwise), but this is not correct. For a

subgroup 𝐴 ∈ L, one could see 𝑝 of 𝐴 as the average of such 0-1 function only over the cover of
𝐴 on the sample, i.e., over at most 𝑚 transactions, but potentially (and, in practice, often) many

fewer than𝑚. The consequences are quite impactful. For example, the rightmost probability in [30,

12
There is a typo in the second line of [30, Equation 41]: the “>” sign should be “<”.
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Equation 42] is (implicitly) upper bounded in [30, Equation 43] using an exponential quantity

obtained from the Chernoff bound, but this quantity is valid only for averages of 0-1 functions over

𝑚 elements, which 𝑝 , as discussed, is not. Essentially the same issue is observed in the passage

between [30, Equation 63] and [30, Equation 64], and in the passage between [30, Equation 21]

and [30, Equation 22]. In the analysis of MiSoSouP, we solve these issue by defining the function

𝜌𝐴, 𝐴 ∈ L, as a non-binary function over all transactions, not just those in the cover of 𝐴.

Because of the issues mentioned in the previous paragraph, the “instantiation” of the GSS
algorithm for the 𝑝-qualities are not correct. One can instead use the function 𝜌𝐴 (𝑡) defined in (3):

its average over all transactions in the sample is an estimate for the 1-quality (see Sect. 4.1), and

this can be combined with the sample average of the generality 𝑔𝐴 to obtain an estimate for the

2-quality, as we do in Sect. 4.2. Fixing the result for the 1/2-quality seems more complicate, as it

was also derivingMiSoSouP-1/2.
Additionally, instead of using the Chernoff bound to compute tail bounds for the sample estima-

tion of unusualness, one must use Hoeffding’s inequality, as we discuss in Sect. 4.1.3.
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