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Abstract Betweenness centrality is a fundamental measure in social network
analysis, expressing the importance or influence of individual vertices (or edges)
in a network in terms of the fraction of shortest paths that pass through them.
Since exact computation in large networks is prohibitively expensive, we present
two efficient randomized algorithms for betweenness estimation. The algorithms
are based on random sampling of shortest paths and offer probabilistic guarantees
on the quality of the approximation. The first algorithm estimates the between-
ness of all vertices (or edges): all approximate values are within an additive factor
ε ∈ (0, 1) from the real values, with probability at least 1−δ. The second algorithm
focuses on the top-K vertices (or edges) with highest betweenness and estimate
their betweenness value to within a multiplicative factor ε, with probability at
least 1 − δ. This is the first algorithm that can compute such approximation for
the top-K vertices (or edges). By proving upper and lower bounds to the VC-
dimension of a range set associated with the problem at hand, we can bound the
sample size needed to achieve the desired approximations. We obtain sample sizes
that are independent from the number of vertices in the network and only depend
on a characteristic quantity that we call the vertex-diameter, that is the maximum
number of vertices in a shortest path. In some cases, the sample size is completely
independent from any quantitative property of the graph. An extensive experi-
mental evaluation on real and artificial networks shows that our algorithms are
significantly faster and much more scalable as the number of vertices grows than
other algorithms with similar approximation guarantees.
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1 Introduction

Centrality indices are fundamental metrics for network analysis. They express the
relative importance of a vertex or an edge in the network. Some of them, e.g.,
degree centrality, reflect local properties of the underlying graph, while others,
like betweenness centrality, give information about the global network structure,
as they are based on counting shortest paths [33]. In this work we are interested
in betweenness centrality [3, 18], that is, for every vertex or edge in the graph, the
fraction of shortest paths that goes through that vertex or edge (see Section 3 for
formal definitions) , and on some variants of it [10, 12, 35]. Betweenness central-
ity has been used to analyze social and protein interaction networks, to evaluate
traffic in communication networks, and to identify important intersections in road
networks [19, 33]. There exist polynomial-time algorithms to compute the exact
betweenness centrality [11], but they are not practical for the analysis of the very
large networks that are of interest these days. Graphs representing online social
networks, communication networks, and the web graph have millions of nodes and
billions of edges, making a polynomial-time algorithm too expensive in practice.
Given that data mining is exploratory in nature, approximate results are usu-
ally sufficient, especially if the approximation error is guaranteed to be within
user-specified limits. In practice, the user is interested in the relative ranking of
the vertices according to their betweenness, rather than the actual value of the
betweenness, so a very good estimation of the value of each vertex (or edge) is
sufficiently informative for most purposes. It is therefore natural to develop al-
gorithms that trade off accuracy for speed and efficiently compute high-quality
approximations of the betweenness values. Nevertheless, in order for these algo-
rithms to be practical, they must scale well and have a low runtime dependency
on the size of the network (number of vertices and/or edges).

Our contributions.We present two randomized algorithms to approximate the be-
tweenness centrality (and some of its variants) of the vertices (or edges) of a graph.
The first algorithm guarantees that the estimated betweenness values for all ver-
tices (or edges) are within an additive factor ε from the real values, with probability
at least 1− δ. The second algorithm focuses on the top-K vertices (or edges) with
highest betweenness and returns a superset of the top-K, while ensuring that the
estimated betweenness for all returned vertices is within a multiplicative factor ε
from the real value, with probability at least 1 − δ. This is the first algorithm to
reach such a high-quality approximation for the set of top-K vertices (or edges).
The algorithms are based on random sampling of shortest paths. The analysis to
derive the sufficient sample size is novel and uses notions and results from VC-
dimension theory. We define a range set associated with the problem at hand and
prove strict bounds to its VC-dimension. The resulting sample size does not depend
on the size of the graph, but only on the maximum number of vertices in a shortest
path, a characteristic quantity of the graph that we call the vertex-diameter. For
some networks, we show that the VC-dimension is actually at most a constant
and so the sample size depends only on the approximation parameters and not on
any quantitative property of the graph, a somewhat surprising fact that points out
interesting insights. Thanks to the lower runtime dependency on the size of the
network, our algorithms are much faster and more scalable than previous contri-
butions [13, 19, 22], while offering the same approximation guarantees. Moreover,
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the amount of work performed by our algorithms per sample is also less than that
of others algorithms. We extensively evaluated our methods on real graphs and
compared their performances to the exact algorithm for betweenness centrality [11]
and to other sampling-based approximation algorithms [13, 19, 22], showing that
our methods achieve a huge speedup (3 to 4 times faster) and scale much better
as the number of vertices in the network grows.

Outline.We present related work in Sect. 2. Section 3 introduces all the basic defi-
nitions and results that we use throughout the paper. A range set for the problem
at hand and the bounds to its VC-dimension are presented in Sect. 4. Based on
these results we develop and analyze algorithms for betweenness estimation that
we present in Sect. 5. Extensions of our methods to various variants of the prob-
lem (including edge betweenness) are presented in Sect. 6. Section 7 reports the
methodology and the results of our extensive experimental evaluation.

2 Related work

Over the years, a number of centrality measures have been defined [33]. In this
work we focus on betweenness centrality and some of its variants.

Betweenness centrality was introduced in the sociology literature [3, 18] and
many variants of it have been developed over the year Brandes [12]. A particularly
interesting variant called “k-bounded-distance betweenness” limits the length of
the shortest paths considered when computing the centrality [10, 12, 37]. This is
not to be confused with “k-path betweenness centrality” [24], which considers sim-
ple random walks that are not necessarily shortest paths. Dolev et al [16] present a
generalization of betweenness centrality which takes into account routing policies
in the network. Opsahl et al [35] define a new distance function between pair of
vertices in order to penalize paths with a high number of hops in weighted network.
This function induces a generalized and parametrized definition of betweenness.

The need of fast algorithms to compute the betweenness of vertices in a graph
arose as large online social networks started to appear. Brandes [11] presents the
first efficient algorithm for the task, running in time O(nm) on unweighted graphs
and O(nm+n2 logn) on weighted ones. The algorithm computes, for each vertex v,
the shortest path to every other vertex and then traverses these paths backwards to
efficiently compute the contribution of the shortest paths from v to the betweenness
of other vertices. For very large networks, the cost of this algorithm would still
be prohibitive in practice, so many approximation algorithms were developed [5,
13, 19, 22, 28, 30]. The use of random sampling was one of the more natural
approaches to speed up the computation of betweenness. Inspired by the work
of Eppstein and Wang [17], Jacob et al [22] and independently Brandes and Pich
[13] present an algorithm that mimics the exact one, with the difference that,
instead of computing the contribution of all vertices to the betweenness of the
others, it only considers the contributions of some vertices sampled uniformly at
random. To guarantee that all estimates are within ε from their real value with
probability at least 1−δ, the algorithm from [13, 22] needs O(log(n/δ)/ε2) samples.
The analysis for the derivation of the sample size uses Hoeffding bounds [21]
and the union bound [32]. Geisberger et al [19] noticed that this can lead to an
overestimation of the betweenness of vertices that are close to the sampled ones and
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introduced different unbiased estimators that are experimentally shown to have
smaller variance and do not suffer from this overestimation issue. Our algorithm
takes a different approach from the above algorithms. Specifically it sample each
time a single random shortest path. This leads to a much smaller sample size
and less work done for each sample, resulting in a much faster way to compute
approximations of the betweenness with the same probabilistic guarantees. For
certain applications it is sufficient to obtain a high-quality approximation of the
centrality of the top-K vertices. Although existing algorithms [13, 19, 22] can be
extended to return a superset of the top-K vertices with highest betweenness, they
only offer an additive approximation guarantee, while our algorithm for the top-K
vertices offers a multiplicative factor guarantee, which is much stricter. We delve
more in the comparisons with these algorithms in Sect. 5.3 and 7.

A number of works explored the use of adaptive sampling, in contrast with
the previous algorithms (and ours) which use a fixed sample size. Bader et al [5]
present an adaptive sampling algorithm which computes good estimations for the
betweenness of high-centrality vertices, by keeping track of the partial contribu-
tion of each sampled vertex, obtained by performing a single-source shortest paths
computation to all other vertices. Maiya and Berger-Wolf [30] use concepts from
expander graphs to select a connected sample of vertices. They estimate the be-
tweenness from the sample, which includes the vertices with high centrality. They
build the connected sample by adding the vertex which maximizes the number of
connections with vertices not already in the sample. Lim et al [28] present modified
versions of this algorithm and an extensive experimental evaluation. The algorithm
does not offer any guarantee on the quality of the approximations. Compared to
these adaptive sampling approaches, our methods ensure that the betweenness of
all (or top-K) vertices is well approximated, while using a fixed, predetermined
amount of samples. Sarıyüce et al [42] present an algorithm that pre-processes the
network in multiple ways by removing degree-1 vertices and identical vertices and
splitting the network" in separate components where the computation of between-
ness can be performed independently and then aggregated. They do not present
an analysis of the complexity of the algorithm.

In the analysis of our algorithm we use results from VC-dimension theory [46],
a key component of statistical learning theory. We compute an upper bound to
the VC-dimension of a range set defined on shortest paths. Kranakis et al [26]
present a number of results on the VC-dimension of various range sets for graphs
(stars, connected sets of vertices, sets of edges), but do not study the case of
shortest paths. Abraham et al [1] use VC-dimension to speed up shortest path
computation but their range set is different from the one we use: their ground set
is the set of vertices while ours is defined on shortest paths.

The use of sampling in algorithms for social network analysis is widespread,
although the word may assume different meanings. For example, Tang et al [45] are
interested in extracting (“sampling”) sets of users (vertices) that are statistically
representative of entire set of vertices. This concept of “sampling” is different from
ours. Papagelis et al [36] focus on algorithms to obtain random samples of the
neighborhood of a vertex as fast as possible. This is a different setting than ours,
as we assume that the entire network is accessible. For additional information,
both basic and advanced, on the use of sampling in graph analysis algorithms, we
refer the reader to the tutorial by Cormode and Duffield [14], with the caveat that
it does not cover VC-dimension and related techniques that we use in this work.
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The present work extends substantially the preliminary version [39]. The proof
of all the theorems and lemmas are presented here for the first time. Examples of
betweenness centrality and of the concept of VC-dimension have been added to
Sect. 3. A major new contribution is a tighter analysis of the algorithm by Bran-
des and Pich [13] and a thorough comparison with it, presented in Sect. 5.3. We
also discuss many other variants of betweenness, including edge betweenness in
Sect. 6, where we also present a new tighter analysis of the algorithm for k-path
betweenness centrality by Kourtellis et al [24].

3 Preliminaries

In this section we introduce the definitions and lemmas that we use throughout
the paper to develop and analyze our results.

3.1 Graphs and betweenness centrality

Let G = (V,E) be a graph, where E ⊆ V × V , with n = |V | vertices and m = |E|
edges. The graph G can be directed or undirected. Each edge e ∈ E has a non-
negative weight w(e). Given a pair of distinct vertices (u, v) ∈ V × V , u 6= v, a
path puv ⊆ V from u to v is an ordered sequence of vertices puv = (w1, . . . , w|puv|)
such that w1 = u, w|puv| = v and for each 1 ≤ i < |puv|, (wi, wi+1) ∈ E. The
vertices u and v are called the end points of puv and the vertices in Int(puv) =
puv \ {u, v} are the internal vertices of puv. The (edge) weight w(puv) of a path
puv = (u = w1, w2, · · · , wp|uv| = v) from u to v is the sum of the weights of
the edges composing the path: w(puv) =

∑|puv|−1
i=1 w((wi, wi+1)). We denote with

|puv| the number of vertices composing the path and call this the size of the path
puv. Note that if the weights are not all unitary, it is not necessarily true that
w(puv) = |puv|−1. A special and degenerate path is the empty path p∅ = ∅, which
by definition has weight w(p∅) =∞, no end points, and Int(p∅) = ∅.

Given two distinct vertices (u, v) ∈ V × V , the shortest path distance duv
between u and v is the weight of a path with minimum weight between u and v
among all paths between u and v. If there is no path between u and v, duv =∞.
We call a path between u and v with weight duv a shortest path between u and v.
There can be multiple shortest paths between u and v and we denote the set of
these paths as Suv and the number of these paths as σuv = |Suv|. If there is no
path between u and v, then Suv = {p∅}1. We denote with SG the union of all the
Suv’s, for all pairs (u, v) ∈ V × V of distinct nodes u 6= v:

SG =
⋃

(u,v)∈V×V
u6=v

Suv .

We now define a characteristic quantity of a graph that we will use throughout
the paper.

1 Note that even if p∅ = ∅, the set {p∅} is not empty. It contains one element.
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Definition 1 Given a graph G = (V,E), the vertex-diameter VD(G) of G is the
size of the shortest path in G with maximum size:

VD(G) = max {|p| : p ∈ SG} .

If all the edge weights are unitary, then VD(G) is equal to diam(G) + 1, where
diam(G) is the number of edges composing the longest shortest path in G.

Given a vertex v, let Tv ⊆ SG be the set of all shortest paths that v is internal
to:

Tv = {p ∈ SG : v ∈ Int(p)} .

In this work we are interested in the betweenness centrality of the vertices and of
the edges of a graph. From now until Sect. 6.3 we only refer to the betweenness of
vertices, and present the extension to edges in Sect. 6.3.

Definition 2 [3, 18] Given a graph G = (V,E), the betweenness centrality of a
vertex v ∈ V is defined as2

b(v) =
1

n(n− 1)

∑
puw∈SG

1Tv (p)

σuw
.

It is easy to see that b(v) ∈ [0, 1].
Figure 1 shows an example of betweenness values for the vertices of a (undi-

rected, unweighted) graph. Just by looking at the graph, one expects that vertices
b and g should have higher betweenness than the others, given that they somehow
act as bridges between two sides of the network, and indeed that is the case.

a

h

b

g f e

c d

(a) Example graph
(b) Betweenness values

Vertex v a b c d e f g h

b(v) 0 0.250 0.125 0.036 0.054 0.080 0.268 0

Fig. 1: Example of betweenness values

Brandes [11] presented an algorithm to compute the betweenness centrality for
all v ∈ V in time O(nm) for unweighted graphs and O(nm+n2 logn) for weighted
graphs.

We present many variants of betweenness in Sect. 6.

2 We use the normalized version of betweenness as we believe it to be more suitable for
presenting approximation results.
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3.2 Vapnik-Chervonenkis dimension

The Vapnik-Chernovenkis (VC) dimension of a class of subsets defined on a set of
points is a measure of the complexity or expressiveness of such class [46]. Given a
probability distribution on the set of points, a finite bound on the VC-dimension of
the class of subsets implies a bound on the number of random samples required to
approximate the probability of each subset in the class with its empirical average.
We outline here some basic definitions and results and refer the reader to the book
by Shalev-Shwartz and Ben-David [43] for an in-depth presentation.

Let D be a domain and R be a collection of subsets from D. We call R a
range set on D. Given B ⊆ D, the projection of R on B is the set PR(B) =
{B ∩A : A ∈ R}. We say that the set B is shattered by R if PR(B) = 2B , where
2B denotes the powerset of B, i.e., all subsets of B.

Definition 3 The Vapnik-Chervonenkis (VC) dimension of R, denoted as VC(R),
is the cardinality of the largest subset of D that is shattered by R.

Note that a range space (X,R) with an arbitrary large set of points X and an
arbitrary large family of ranges R can have a bounded VC-dimension. A simple
example is the family of intervals in [0, 1] (i.e. X is all the points in [0, 1] and R all
the intervals [a, b], such that 0 ≤ a ≤ b ≤ 1). Let A = {x, y, z} be the set of three
points 0 < x < y < z < 1. No interval in R can define the subset {x, z} so the
VC-dimension of this range space is less than three [31, Lemma 10.3.1]. Another
example is shown in Fig. 2.

y

x0

y

x0

Fig. 2: Example of range space and VC-dimension. The space of points is the plane
R2 and the set R of ranges is the set of all axis-aligned rectangles. The figure on
the left shows graphically that it is possible to shatter a set of four points using
16 rectangles. On the right instead, one can see that it is impossible to shatter
five points, as, for any choice of the five points, there will always be one (the red
point in the figure) that is internal to the convex hull of the other four, so it would
be impossible to find an axis-aligned rectangle containing the four points but not
the internal one. Hence VC((R2, R)) = 4. This figure and this caption are taken
from [40, Fig. 1].

The main application of VC-dimension in statistics and learning theory is in
computing the number of samples needed to approximate the probabilities of
the ranges using their empirical averages as unbiased estimators. Formally, let
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Xk
1 = (X1, . . . , Xk) be a collection of independent identically distributed random

variables taking values in D, sampled according to some distribution φ defined on
the elements of D. For a set A ⊆ D, let φ(A) be the probability that a sample
from φ belongs to the set A, and let the empirical average of φ(A) on Xk

1 be

φXk
1
(A) =

1

k

k∑
j=1

1A(Xj) .

where 1A is the indicator function for the set A (1A(X) is 1 if X ∈ A, and 0
otherwise). The empirical average of φ(A) can be used as an unbiased estimator
for φ(A).

Definition 4 Let R be a range set on D and φ be a probability distribution on
D. For ε ∈ (0, 1), an ε-approximation to (R, φ) is a multiset (i.e., a bag) S of
elements of D such that

sup
A∈R

|φ(A)− φS(A)| ≤ ε .

When an upper bound to the VC-dimension of R is available, it is possible
to build an ε-approximation by sampling points of the domain according to the
distribution φ.

Theorem 1 (Thm. 2.12 [20] (see also [27])) Let R be a range set on a domain
D with VC(R) ≤ d, and let φ be a distribution on D. Given ε, δ ∈ (0, 1) let S be a
collection of |S| points from D sampled according to φ, with

|S| = c

ε2

(
d+ ln

1

δ

)
(1)

where c is an universal positive constant. Then S is an ε-approximation to (R, φ)
with probability at least 1− δ.
The constant c is estimated to be approximately 0.5 [29]. It is possible to obtain
relative guarantees on the approximation.

Definition 5 Let R be a range set on D and φ be a probability distribution on
D. For p, ε ∈ (0, 1), a relative (p, ε)-approximation to (R, φ) is a bag S of elements
from D such that
– For any A ∈ R such that φ(A) ≥ p, we have

|φ(A)− φS(A)| ≤ εφ(A) .

– For any B ∈ R such that φ(B) < p, we have φS(B) ≤ (1 + ε)p.

Theorem 2 (Thm. 2.11 [20]) Let R be a range set on a domain D with VC(R) ≤
d, and let φ be a distribution on D. Given ε, δ, p ∈ (0, 1) let S be a collection of
|S| points from D sampled according to φ, with

|S| ≥ c′

ε2p

(
d log

1

p
+ log

1

δ

)
(2)

where c′ is an absolute positive constant. Then S is a relative (p, ε)-approximation
to (R, φ) with probability at least 1− δ.

It is important to mention that if VC(R) and/or the upper bound d do not
depend on |D| or on |R| neither do the sample sizes presented in Thm. 1 and 2.
This will make our algorithms scale well as the size of the network increases.



Fast approximation of betweenness centrality through sampling 9

4 A range set on shortest paths

We now define a range set on the set of shortest paths of a graph G = (V,E), and
present a tight upper bound to its VC-dimension. We use the range set and the
bound in the analysis of our algorithms for estimating the betweenness centrality
of vertices of G.

The range set RG is defined on the set SG of all shortest paths between vertices
of G. It contains, for each vertex v ∈ V , the set Tv of shortest paths that v is
internal to:

RG = {Tv : v ∈ V } .

Given a graph G = (V,E), assume, for technical reasons, that |E| ≥ 2 (the
case |E| = 1 is trivial). Consider the set

I = {Int(p) : p ∈ SG} .

The proper-subset relation between sets defines a partial order on I. Let AI be
the collection of anti-chains in I according to this partial order (AI is a set of
subsets of I). Let H(G) be the maximum integer h such that there is an anti-chain
A ∈ AI, A = {Int(p1), . . . , Int(pd)} of size d = blog2(h− 2)c+1 such that |pi| ≥ h,
for each 1 ≤ i ≤ d. Note that since |E| ≥ 2 and the size of a path is always at
least 2, then the formula for d is always well defined.

Lemma 1 VC(RG) ≤ blog2(H(G)− 2)c+ 1.

Proof Let ` > blog2(H(G) − 2)c + 1 and assume for the sake of contradiction
that VC(RG) = `. From the definition of VC-dimension there is a set Q ⊆ SG of
size ` that is shattered by RG. For any two shortest paths p′, p′′ in Q we must
have neither Int(p′) ⊆ Int(p′′) nor Int(p′′) ⊆ Int(p′), otherwise one of the two
paths would appear in all ranges where the other one appears, and so it would
be impossible to shatter Q. Then Q must be such that the collection of the sets
of internal vertices of the paths in Q form an anti-chain. From this and from the
definition of H(G) we have that Q must contain a path p of size |p| ≤ H(G). There
are 2`−1 non-empty subsets of Q containing the path p. Let us label these non-
empty subsets of Q containing p as S1, . . . , S2`−1 , where the labelling is arbitrary.
Given that Q is shattered, for each set Si there must be a range Ri in RG such
that Si = Q∩Ri. Since all the Si’s are different from each other, then all the Ri’s
must be different from each other. Given that p is a member of every Si, p must
also belong to each Ri, that is, there are 2`−1 distinct ranges in RG containing p.
But p belongs only to the ranges corresponding to internal vertices of p, i.e., to
vertices in Int(p). This means that the number of ranges in RG that p belongs to
is equal to |p|−2. But |p| ≤ H(G) by definition of H(G), so p can belong to at most
H(G)−2 ranges from RG. Given that 2`−1 > H(G)−2, we reached a contradiction
and there cannot be 2`−1 distinct ranges containing p, hence not all the sets Si
can be expressed as Q ∩ Ri for some Ri ∈ RG. Then Q cannot be shattered and
VC(RG) ≤ blog2(H(G)− 2)c+ 1.

Computing H(G) is not a viable option, but given that H(G) ≤ VD(G), we
have the following corollary.

Corollary 1 VC(RG) ≤ blog2(VD(G)− 2)c+ 1.
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4.1 Unique shortest paths

In the restricted case when the graph is undirected and every pair of distinct ver-
tices has either none or a unique shortest path between them, the VC-dimension
of RG reduces to a constant. This is a somewhat surprising result with interesting
consequences. From a theoretical point of view, it suggests that there should be
other characteristic quantities of the graph different from the vertex diameter that
control the VC-dimension of the range set of shortest paths, and these quanti-
ties are constant on graph with unique shortest paths between vertices. From a
more practical point of view, we show in Sect. 5 that this result has an impact
on the sample size needed to approximate the betweenness centrality of networks
where the unique-shortest-path property is satisfied or even enforced, like road
networks [19]. In particular, the resulting sample size will be completely indepen-
dent from any characteristic of the network, and will only be a function of the
parameters controlling the desired approximation guarantees.

Lemma 2 Let G = (V,E) be an undirected graph with |Suv| ≤ 1 for all pairs
(u, v) ∈ V × V . Then VC(RG) ≤ 3.

Proof In this restricted setting, if two different shortest paths p1 and p2 “meet” at
a vertex u, then they either continue together to a vertex v 6= u or they separate
never to “meet again” at any other vertex v 6= u. More formally if the node coming
after u in p1 and p2 is different (or exists only for one path but not for the other),
then the subpaths of p1 and p2 starting from u have an empty intersection. This is
easy to see: if they could separate at u and then meet again at some v, then there
would be two distinct shortest paths between u and v, which is a contradiction of
the hypothesis. Let us denote this fact as F.

Assume now that VC(RG) > 3, then there must be a set Q = {p1, p2, p3, p4}
of four shortest paths that can be shattered by RG. Then there is a vertex w
such that Tw ∩ Q = Q, i.e., all paths in Q go through w. Let x be the farthest
predecessor of w along p1 that p1 shares with some other path from Q, and let y
be the farthest successor of w along p1 that p1 shares with some other path from
Q. It is easy to see that if either x or y (or both) do not exist, then Q cannot be
shattered, as we would incur in a contradiction of fact F.

Let us then assume that both x and y exist. Let Qx = Tx∩Q and Qy = Ty∩Q.
From fact F, we have that all paths in Qx must go through the same vertices
between x and w and all paths in Qy must go through the same vertices between
w and y. This also means that all paths in Qx ∩ Qy must go through the same
vertices between x and y. If Qx ∪ Qy ( Q, let p∗ ∈ Q \ (Qx ∪ Qy). Since p∗ and
p1 are distinct, then from this, from the definition of x and y, and from fact F we
have that there is no vertex v such that Tv ∩Q = {p1, p∗}, which implies that Q
can not be shattered. Indeed if there was a vertex v such that Tv ∩Q = {p1, p∗},
the paths p1 and p∗ would meet in w and v; which contradicts fact F .

From now we can therefore consider only the case Qx∪Qy = Q. If Qx∩Qy = Q,
then all the paths in Q go through the same vertices between x and y. From this
and the definition of x and y we have that there is no vertex v such that, for
example, Tv ∩ Q = {p1, p2}, hence Q cannot be shattered. Suppose instead that
Qx ∩ Qy ( Q and let S = (Qx ∩ Qy) \ {p1}. If S 6= ∅ then there is at least a
path p′ ∈ S which, from the definition of S and fact F, must go through all the
same vertices as p1 between x and y. Moreover, given that Qx ∩ Qy 6= Q, there
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Fig. 3: Directed graph G = (V,E) with |Suv| ≤ 1 for all pairs (u, v) ∈ V × V and
such that it is possible to shatter a set of four paths.

must be a path p′′ ∈ Q \ {p1} different from p1 such that p′′ /∈ S. Then, from the
definition of x, y, and S, and from the existence of p′, there can be no vertex v
such that Tv∩Q = {p1, p′′}, hence Q cannot be shattered. Assume now that S = ∅
and consider the case Qx = {p1, p2, p3}, Qy = {p1, p4} (all other cases follow by
symmetry with this case ). Consider the set {p1, p3}. From the definition of x and
Qx, and from fact F we have that there can not be a vertex v between the end
point of p1 before x (according to p1) and w such that Tv ∩Q = {p1, p3}. At the
same time, from the definition of y and from fact F, we have that such a v can
not be between w and the end point of p1 after y. This implies that Q can not be
shattered.

We showed that in all possible cases we reached a contradiction: there is no
set Q of 4 shortest paths that can be shattered by RG. Hence VC(RG) ≤ 3, which
concludes our proof.

The case of directed graphs. It is natural to ask whether the above lemma or
a similar result also holds for directed graphs. Fact F does not hold for directed
graphs so the above proof does not extend immediately. In Fig. 3 we show a directed
graph for which there is a set of four shortest paths that can be shattered. For any
pair of vertices in the graph, there is at most one shortest path connecting them.
Consider now the following four directed shortest paths:

– pA = {1, 2, 4, 6, 7, 13, 14, 16, 17, 18, 22, 21}
– pB = {8, 9, 10, 5, 12, 13, 14, 16, 17, 18, 26, 27}
– pC = {25, 24, 26, 18, 19, 15, 14, 7, 6, 5, 4, 3}
– pD = {23, 20, 22, 17, 16, 15, 14, 7, 6, 5, 10, 11}

It is easy to check that the set Q = {pA, pB , pC , pD} is shattered and Table 1
shows, for each subset R ⊆ Q, the vertex v such that R = Q ∩ Tv. This means
that Lemma 2 is not true for directed graphs. It is an open question whether it is
true for a different constant.

4.2 Tightness

The bound presented in Corol. 1 (and therefore Lemma 1) is strict in the sense
that for each d ≥ 1 we can build a graph Gd with vertex-diameter VD(Gd) = 2d+1
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P ⊆ Q Vertex v such that P = Q ∩ Tv
∅ 1
{pA} 2
{pB} 9
{pC} 24
{pD} 20
{pA, pB} 13
{pA, pC} 4
{pA, pD} 22
{pB , pC} 26
{pB , pD} 10
{pC , pD} 15
{pA, pB , pC} 18
{pA, pB , pD} 16
{pA, pC , pD} 7
{pB , pC , pD} 5
{pA, pB , pC , pD} 14

Table 1: How to shatter Q = {pA, pB , pC , pD}.

and such that the range set RGd
associated to the set of shortest paths of Gd has

VC-dimension exactly d = blog2(VD(Gd)− 2)c+ 1.
We now introduce a class G = (Gd)d≥1 of graphs indexed by d. The graphs

in G are the ones for which we can show the tightness of the bound to the VC-
dimension of the associated range set. We call the graph Gd ∈ G the dth concertina
graph. Figure 4 shows G1, G2, G3, and G4. The generalization to higher values of
d is straightforward. By construction, VD(Gd) = 2d + 1, so that blog2(VD(Gd) −
2)c + 1 = d. The Gd concertina graph has 3(2d−1) vertices and they can be
partitioned into three classes, top, bottom, and middle, according to their location
in a drawing of the graph similar to those in Fig. 4. Gd has 2d−1 − 1 top vertices,
2d−1 − 1 bottom vertices, and 2d−1 + 2 middle vertices. For each top vertex v,
let f(v) be the corresponding bottom vertex, i.e., the bottom vertex u whose two
neighbors are the same two middle vertices that are neighbors of v. Analogously,
the corresponding top vertex of a bottom vertex w is the top vertex v such that
(v) = w. Among the middle vertices, the two with degree 1 are special and are
called the end vertices of Gd and denoted as v` and vr, where the labels can be
arbitrarily assigned.

In Lemma 3 we build a set Q of d shortest paths from v` to vr and show that
it is shattered by RGd

, therefore proving that VC(RGd
) ≥ d. This fact, together

with Coroll. 1, allows us to conclude that VC(RGd
) = d.

Lemma 3 VC(RGd
) = d.

Proof Let D = {1, 2, 3, . . . , d}. The proof proceeds as follows:

1. Define a map r from S = 2D \ {∅, D} to set of of top and bottom vertices of
Gd.

2. Use the map r to build the set Q of d shortest paths from v` to vr.
3. Show that Q is shattered by RGd

, implying VC(RGd
≥ d.

4. Conclude from the above and from Corol. 1 that VC(RGd
= d.
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Fig. 4: Examples of concertina graphs Gd for d = 1, 2, 3, 4.

1. Defining the map r. For any set (of subsets of D) s′ ∈ S, let c(s′) = D \ s′. The
set (of subsets of D) c(s′) is the unique set (of subsets of D) s′′ ∈ S such that
s′ ∩ s′′ = ∅ and s′ ∪ s′′ = D.

We can partition S in two sets A and B (A∪B = S, A∩B = ∅) as follows: for
any unordered pair (s′, c(s′)), we arbitrarily put s′ in A and c(s′) in B. It is easy
to see that |A| = |B| = 2d−1 − 1, which is the number of top vertices of Gd (and
the number of bottom vertices of Gd)

We now build a mapping rA (resp. rB) that will map each element of A (resp. of
B) to a top (resp. bottom) vertex of Gd. We will then use these mappings to build
the set of paths to be shattered.

Let rA be an arbitrary one-to-one map from each element of A to a top vertex
of Gd (i.e., it maps a set of subsets of D to a top vertex). We now build the
one-to-one map rB from each element of B to a bottom vertex of Gd. Consider
the inverse map r−1

A from the top vertices of Gd to the elements of A and let v be
any top vertex of Gd. For any top vertex v, r−1

A (v) is a set of subsets of D, and
a element of A (and of S), and therefore there is an element s′′ of B such that
s′′ = c(r−1

A (v)).
The bijection rB maps the element c(r−1

A (v)) of B to the bottom vertex f(v)
corresponding to v. In other words, if a set s′ of subsets of D is mapped by rA
to a top vertex v, then rB maps to the bottom vertex f(v) the unique set s′′ of
subsets of D such that s′′ = c(s′).

It is easy to see that, if we take the union of rA and rB, we obtain a map r
from S to the set of top and bottom vertices of Gd. An example of a possible r for
G3 is presented in Fig. 5.

2. Building the set Q of shortest paths. We now build the set Q = {p1, . . . , pd}
which contains d shortest paths from v` to vr. Given the definition of Gd, it should
be clear that all these shortest paths must go through all other middle vertices of
Gd. Let M be the set of all middle vertices in Gd, and consider the set E = V \M
(i.e., E is the set containing all the top and bottom vertices of Gd. For any i ∈ D,
the set of vertices that the path pi ∈ Q goes through is the set Pi = M ∪ {v ∈
E : i ∈ r−1(v)}. We build the path pi by sorting the vertices in Pi in increasing
order by their shortest path distance from v`. There is a unique such ordering of
the vertices in Pi, as they all have different shortest path distances from v`. It is
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v`
m1

t1, {1}

b1, {2, 3}

m2

t2, {2}

b2, {1, 3}

m3

t3, {3}

b3, {1, 2}

m4
vr

Fig. 5: An example of the r map for G3. The set next to each top and bottom
vertex u is the set s such that r(s) = u.

easy to see that pi is a shortest path. Note that a path pi ∈ Q goes through a top
vertex v if and only if i ∈ r−1

A (v). Analogously, pi goes through a bottom vertex
u if and only if i ∈ r−1

B (u). Taking the map r from Fig. 5 as an example, the set
Q = {p1, p2, p3} contains the following shortest paths:

– p1 = {v`,m1, t1,m2, b2,m3, b3,m4, vr}
– p2 = {v`,m1, b1,m2, t2,m3, b3,m4, vr}
– p3 = {v`,m1, b1,m2, b2,m3, t3,m4, vr}

3. Showing that Q is shattered by RGd
. We now show that the set Q of shortest

paths is shattered by RGd
. We want to show that each subset s of Q can be

expressed as the intersection between Q and a range Tv ∈ RGd
, for some vertex

v in Gd. Consider first the case s = Q (as Q is a subset of itself). All paths in
Q go through all the middle vertices that are not v` or vr, so if we let vQ be any
arbitrary middle vertex different from v` or vr, we have Q = Q ∩ TvQ . Also, given
that v` is not internal to any path in Q, we have ∅ = Q ∩ Tv` .

Let now Q = 2Q \{∅, Q} and denote with Is the set of indexes i ∈ D such that
pi ∈ s. We want to show that s = Q ∩ Tr(Is). It is easy to see that s ⊆ Q ∩ Tr(Is),
as the vertex r(Is) is internal to all paths in s, by definition of r(Is) and of the
paths in Q. On the other end, no path in Q \ s belongs to Q ∩ Tr(Is) as no path
in Q \ s goes through r(Is) because it goes through the corresponding vertex of
r(Is) (this corresponding vertex is a top vertex if r(Is) is a bottom vertex, and a
bottom vertex otherwise). Hence we showed that s = Q ∩ Tr(Is) for any s ∈ Q.

We showed that all subsets of Q can be expressed as the intersection between Q
and a range from RGd

, which means that Q is shattered and therefore VC(RGd
) ≥

d.

4. Concluding the proof. From Corol. 1 we know that VC(RGd
) ≤ d, so it must be

VC(RGd
) = d, which concludes our proof.

The upper bound presented in Lemma 2 for the case of unique shortest paths
is also strict in the same sense.

Lemma 4 There is a graph G = (V,E) with |Suv| ≤ 1 for all pairs (u, v) ∈ V ×V
such that the range set RG associated to the shortest paths in G has VC-Dimension
exactly 3.
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Fig. 6: Graph G with VC(RG) = 3.

Proof Consider the graph G in Fig. 6. Let p1 = (a, b, c, e, i, j), p2 = (m, f, e, i, k, l),
p3 = (d, c, e, f, g, h) be three paths. We now show that Q = {p1, p2, p3} can be
shattered by RG, which implies VC(RG) ≥ 3. We have ∅ = Q∩Ta, {p1} = Q∩Tb,
{p2} = Q∩Tk, {p3} = Q∩Tg, {p1, p2} = Q∩Ti, {p1, p3} = Q∩Tc, {p2, p3} = Q∩Tf ,
{p1, p2, p3} = Q ∩ Te. Hence all subsets of Q can be expressed as the intersection
between Q and some range in RG which means that Q can be shattered and
VC(RG) ≥ 3. Lemma 2 gives us an upper bound VC(RG) ≤ 3, so we can conclude
that VC(RG) = 3.

Although the example in Fig. 6 is a tree, this is not a requirement for either
Lemma 2 or Lemma 4: in a weighted graph with cycles (i.e., not a tree) the weights
may be such that there is a unique shortest path between any pair of connected
vertices.

5 Algorithms

In this section we present our algorithms to compute a set of approximations for
the betweenness centrality of the (top-K) vertices in a graph through sampling,
with probabilistic guarantees on the quality of the approximations.

5.1 Approximation for all the vertices

The intuition behind the algorithm to approximate the betweenness values of all
vertices is the following. Given a graph G = (V,E) with vertex-diameter VD(G)
and two parameters ε, δ ∈ (0, 1) we first compute a sample size r using (1) with

d = blog2(VD(G)− 2)c+ 1 .

The resulting sample size is

r =
c

ε2

(
blog2(VD(G)− 2)c+ 1 + ln

1

δ

)
. (3)

This is sufficient to achieve the desired accuracy (expressed through ε) with the
desired confidence (expressed through 1− δ). The algorithm repeats the following
steps r times: 1. it samples a pair u, v of distinct vertices uniformly at random,
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2. it computes the set Suv of all shortest paths between u and v, 3. it selects
a path p from Suv uniformly at random, 4. it increases by 1/r the betweenness
estimation of each vertex in Int(p). Note that if the sampled vertices u and v are
not connected, we can skip steps 3 and 4 because we defined Suv = {p∅}. Denoting
with S the set of the sampled shortest paths, the unbiased estimator b̃(w) for the
betweenness b(w) of a vertex w is the sample average

b̃(w) =
1

r

∑
p∈S

1Int(p)(w) =
1

r

∑
p∈S

1Tw(p) .

There are two crucial steps in this algorithm: the computation of VD(G) and
the sampling of a path uniformly at random from Suv. We first deal with the
latter, and then present a linear-time constant-factor approximation algorithm
for VD(G). Algorithm 1 presents the pseudocode of the algorithm, including the
steps to select a random path. The computeAllShortestPaths(u, v) on line 8 is
a call to a modified Dijkstra’s (or BFS) algorithm to compute the set Suv, with
the same modifications as the exact betweenness algorithm by Brandes [11]. The
getDiameterApprox() procedure computes an approximation for VD(G).

Sampling a shortest path Our procedure to select a random shortest path from
Suv is inspired by the dependencies accumulation procedure used in Brandes’ exact
algorithm [11]. Let u and v be the vertices sampled by our algorithm (Step 7 of
Alg. 1). We assume that u and v are connected otherwise the only possibility is to
select the empty path p∅. Let y be any vertex belonging to at least one shortest
path from u to v. Following Brandes [11], we can compute σuy and Suy while we
compute the set Suv of all the shortest paths from u to v. We can then use this
information to select a shortest path p uniformly at random from Suv as follows.
For each vertex w let Pu(w) be the subset of neighbors of w that are predecessors
of w along the shortest paths from u to w. Let p∗ be the sampled shortest path
that we build backwards starting from the endpoint v and adding the sampled
predecessors before v. Initially we have p∗ = {v}. Starting from v, we select one of
its predecessors z ∈ Pu(v) using weighted random sampling: each z ∈ Pu(v) has
probability σuz/

∑
w∈Pu(v)

σuw = σuz/σuv of being sampled. We add z to p∗ and
then repeat the procedure for z. That is, we select one of z’s predecessors (denote
it with `) from Pu(z) using weighted sampling with weight σu`/σuz, and add it to
p∗ before v (i.e., p∗ is now {`, v}, and so on until we reach u. Note that we can
update the estimation of the betweenness of the internal vertices along p∗ (the
only ones for which the estimation is updated) as we compute p∗.

Lemma 5 The path p∗ built according to the above procedure is selected uniformly
at random among the paths in Suv.

Proof The probability of sampling p∗ = (u, z1, . . . , z|p∗|−2, v) equals to the product
of the probabilities of sampling the vertices internal to p∗, hence

Pr(p∗) =
σuz|p∗|−2

σuv

σuz|p∗|−3

σuz|p∗|−2

· · · 1

σuz2
=

1

σuv

where we used a result by Brandes [11, Lemma 3] which gives us the following
expression about the number of shortest paths for w 6= u,

σuw =
∑

j∈Pu(w)

σuj
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and the fact that for z1, which is a neighbor of u, σuz1 = 1.

Algorithm 1: Computes approximations b̃(v) of the betweenness centrality
b(v) for all vertices v ∈ V .

Input : Graph G = (V,E) with |V | = n, ε, δ ∈ (0, 1)
Output: A set of approximations of the betweenness centrality of the vertices in V

1 foreach w ∈ V do
2 b̃(v)← 0
3 end
4 VD(G)←getVertexDiameter(G)
5 r ← (c/ε2)(blog2(VD(G)− 2)c+ ln(1/δ))
6 for i← 1 to r do
7 (u, v)←sampleUniformVertexPair(V )
8 Suv ←computeAllShortestPaths(u, v)
9 if Suv 6= {p∅} then

//Random path sampling and estimation update
10 t← v
11 while t 6= u do
12 sample z ∈ Pu(t) with probability σuz/σut
13 if z 6= u then
14 b̃(z)← b̃(z) + 1/r
15 end
16 t← z

17 end
18 end
19 end
20 return {(v, b̃(v)), v ∈ V }

Approximating the vertex-diameter The algorithm presented in the previous sec-
tion requires the value of the vertex-diameter VD(G) of the graph G (line 4 of
Alg. 1). Computing the exact value of VD(G) could be done by solving the All
Pair Shortest Paths (APSP) problem, and taking the shortest path with the max-
imum size. Algorithms for exactly solving APSP problem such as Johnson’s which
runs in O(V 2 log V + V E) or Floyd-Warshall’s (Θ(V 3)), would defeat our pur-
poses: that is, once we have all the shortest paths for the computation of the
diameter, we may as well calculate the betweenness of all the vertices exactly,
given that the most expensive part of this latter computation (i.e., obtaining the
shortest paths) is already done. Given that Thm. 1 (and Thm. 2) only requires
an upper bound to the VC-dimension of the range set, an approximation of the
vertex-diameter would be sufficient for our purposes. Several refined algorithms
for approximating the diameter are known [2, 9, 41], with various running times
and quality of approximations. We briefly present a well-known and simple ap-
proximation algorithm that has the right balance of accuracy and speed for our
purposes.

Let G = (V,E) be an undirected graph where all the edge weights are equal.
It is a well-known result that one can obtain a 2-approximation ṼD(G) of the
vertex-diameter VD(G) of G in time O(V + E) in the following way:

1. select a vertex v ∈ V uniformly at random;
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2. compute the shortest paths from v to all other vertices in V ;
3. finally take ṼD(G) to be the sum of the lengths of the two shortest paths with

maximum size (which equals to the two longest shortest paths) from v to two
distinct other nodes u and w.

Lemma 6 deals with the approximation guarantees of this algorithm.

Lemma 6 VD(G) ≤ ṼD(G) ≤ 2VD(G).

Proof Let v ∈ V be a vertex that we choose uniformly at random from the set V .
Let also u,w ∈ V be the two vertices such that the sum of the sizes of the shortest
paths pvu and pvw is maximized among all the shortest paths that have v as a
source. We have ṼD(G) ≤ 2VD(G) because |pvu|, |pvw| ≤ VD(G), so |pvu|+|pvw| ≤
2VD(G). To see that ṼD(G) ≥ VD(G), consider a pair of vertices x and z such
that the length of a shortest path between x and z is equal to VD(G). Let pxv be a
shortest path between x and v and let pvz be a shortest path between v and z. From
the properties of the shortest paths pvu, pvw we have |pvu|+ |pvw| ≥ |pvx|+ |pvz|.
Since the graph is undirected |ps,t| = |pt,s| for every s, t ∈ V . Therefore:

ṼD(G) = |pvu|+ |pvw| ≥ |pvx|+ |pvz| = |pxv|+ |pvz| ≥ VD(G) .

For the last inequality we used the fact that since VD(G) is the size of the shortest
path from x to z, then every other path (in this case p′xz which is the merge of
pxv and pvz) has greater or equal length from px,z.

In case we have multiple connected components in G, we compute an upper bound
to the vertex diameter of each component separately by running the above algo-
rithm on each component, and then taking the maximum. The connected com-
ponents can be computed in O(n + m) by traversing the graph in a Breadth-
First-Search (BFS) fashion starting from a random v. The time complexity of the
approximation algorithm in the case of multiple connected components is again
O(n+m) since the sum of the vertices of individual components is n and the sum
of edges is m.

The use of the above 2-approximation in the computation of the sample size
from line 6 of Alg. 1 results in at most c/ε2 additional samples than if we used
the exact value VD(G). The computation of ṼD(G) does not affect the running
time of our algorithm: for the construction of the first sample we can reuse the
shortest paths from the sampled vertex v that we used to obtain the approximation.
Specifically, we can sample a new vertex u 6= v and then choose with uniform
probability one of the (already computed) shortest paths between v and u.

If the graph is directed and/or not all edge weights are equal, the computation
of a good approximation to VD(G) becomes more involved. In particular, notice
that there is no relationship between VD(G) and diam(G) when G is weighted, as
the shortest path with maximum size may not be the shortest path with maximum
weight. In these cases, one can use the size (number of vertices) of the largest
Weakly Connected Component (WCC), as a loose upper bound to VD(G). The
WCC’s can again be computed in O(n + m) using BFS. This quantity can be
as high as n but for the computation of the sample size we use its logarithm,
mitigating the crudeness of the bound. In this case our sample size is comparable
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to that proposed by Brandes and Pich [13].3 Nevertheless the amount of work done
per sample by our algorithm is still much smaller (see Sect. 5.3 and 7 for more
details). In practice, it is possible that the nature of the network suggests a much
better upper bound to the vertex-diameter of the graph, resulting in a smaller
sample size.

Analysis Algorithm 1 offers probabilistic guarantees on the quality of all approx-
imations of the betweenness centrality.

Lemma 7 With probability at least 1− δ, all the approximations computed by the
algorithm are within ε from their real value:

Pr
(
∃v ∈ V s.t. |b(v)− b̃(v)| > ε

)
< δ .

Proof For each puv ∈ SG let

πG(puv) =
1

n(n− 1)

1

σuv
.

It is easy to see that πG is a probability distribution and πG(puv) is the probability
of sampling the path puv during an execution of the loop on line 6 in Alg. 1,
given the way that the vertices u and v are selected and Lemma 5. Given a set
A of shortest paths in G, we slightly abuse the notation and denote πG(A) =∑
p∈A πG(p).
Consider the range set RG and the probability distribution πG. Let S be the

set of paths sampled during the execution of the algorithm. For r as in (3), Thm. 1
tells us that the sample S is a ε-approximation to (RG, πG) with probability at
least 1−δ. Suppose that this is indeed the case, then from Def. 4 and the definition
of RG we have that∣∣∣∣∣∣πG(Tv)− 1

r

∑
p∈S

1Tv (p)

∣∣∣∣∣∣ =
∣∣∣πG(Tv)− b̃(v)

∣∣∣ ≤ ε, ∀v ∈ V .

From the definition of πG we have

πG(Tv) =
1

n(n− 1)

∑
puw∈Tv

1

σuw
= b(v),

which concludes the proof.

Time and space complexity. Clearly the runtime of the algorithm is dominated by
the computation of the shortest path at each step, which takes time O(|V |+|M |) if
the graph is unweighted (BFS algorithm) and time O(|E|+ |V | log |V |) otherwise
(Dijkstra’s algorithm with Fibonacci heap). This time must then be multiplied
by r as in (3) to obtain the final time complexity. The space requirements are
dominated by the amount of memory needed to store the graph, so they are either
O(|V |2) if using an adjacency matrix, or O(|V |+ |E|) if using |V | adjacency lists.

3 After this work was accepted for publication, Bergamini and Meyerhenke [7] presented an
improved upper bound for VD(G) for undirected weighted graphs.
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Unique shortest paths When, for each pair (u, v) of vertices of G, either there is a
unique shortest path from u to v or v is unreachable from u, then one can apply
Lemma 2 and obtain a smaller sample size

r =
c

ε2

(
3 + ln

1

δ

)
to approximate the betweenness values of all the vertices. This is an interesting
result: the number of samples needed to compute a good approximation to all
vertices is a constant and completely independent from G. Intuitively, this means
that the algorithm is extremely fast on graphs with this property. Unique shortest
paths are common or even enforced in road networks by slightly perturbing the
edge weights or having a deterministic tie breaking policy [19].

5.2 High-quality approximation of the top-K betweenness vertices

Very often in practice one is interested only in identifying the vertices with the
highest betweenness centrality, as they are the “primary actors” in the network.
We present here an algorithm to compute a very high-quality approximation of
the set TOP(K,G) of the top-K betweenness vertices in a graph G = (V,E).
Formally, let v1, . . . , vn be a labelling of the vertices in V such that b(vi) ≥ b(vj) for
1 ≤ i < j ≤ n. Then TOP(K,G) is defined as the set of vertices with betweenness
at least b(vK):

TOP(K,G) = {(v, b(v)) : v ∈ V and b(v) ≥ b(vK)} .
Note that TOP(K,G) may contain more than K vertices.

Our algorithm works in two phases. Each phase is basically a run of the al-
gorithm for approximating the betweenness of all vertices. The two phases differ
in the way they compute the number of paths to sample and the additional op-
erations at the end of each phase. In the first phase, we compute a lower bound
`′ to b(vK). In the second phase we use `′ to compute the number of samples r
needed to obtain a relative (`′, ε)-approximation to (RG, πG). We use r samples
to approximate the betweenness of all vertices again, and return a collection of
vertices that is, with high probability, a superset of TOP(K,G).

Let ṼD(G) be an upper bound to the vertex-diameter of G. Given ε, δ ∈ (0, 1),
let δ′, δ′′ be two positive reals such that (1− δ′)(1− δ′′) ≥ (1− δ). Let

r′ =
c

ε2

(
blog2(ṼD(G)− 2)c+ 1 + log

1

δ′

)
.

In the first phase we compute b̃′K , which is theK-th highest estimated betweenness
obtained using Algorithm 1 where r = r′. Let now `′ = b̃′K − ε, and

r′′ =
c′

ε2`′

(
(blog2(ṼD(G)− 2)c+ 1) log

1

`′
+ log

1

δ′′

)
.

In the second phase, we run Algorithm 1 with r = r′′. Let b̃′′K be the so-obtained
K-th highest estimated betweenness and let `′′ = b̃′′K/(1 + ε). We return the
collection

T̃OP(K,G) =

{
v ∈ V :

b̃′′(v)

1− ε ≥ `
′′
}

.

The pseudocode of the algorithm is presented in Algorithm 2.
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Algorithm 2: High-quality approximation of the top-K betweenness vertices
Input : a graph G = (V,E) with |V | = n, a positive integer K ≤ n, real values

ε, δ ∈ (0, 1)
Output: a superset of TOP(K,G), with high-quality estimation of the betweenness for

the vertices in the returned set.
1 δ′, δ′′ ← two positive reals such that (1− δ′)(1− δ′′) ≥ (1− δ)
2 ṼD(G)← upper bound to VD(G)

//First phase

3 r′ ← c
ε2

(
blog2(ṼD(G)− 2)c+ 1 + log 1

δ′′

)
4 B′ = {(v, b̃′(v)) : v ∈ V } ← output of Algorithm 1 with r = r′

5 b̃′K ← K-th highest betweenness value from B′, ties broken arbitrarily
6 `′ ← b̃′K − ε
7 r′′ ← c′

ε2`′

(
(blog2(ṼD(G)− 2)c+ 1) log 1

`′ + log 1
δ′′

)
//Second phase

8 B′′ = {(v, b̃′′(v)) : v ∈ V } ← output of Algorithm 1 with r = r′′

9 b̃′′K ← K-th highest betweenness value from B′′, ties broken arbitrarily
10 `′′ ← b′′K/(1 + ε)

11 return {(v, b̃′′(v)) : v ∈ V s.t. b̃′′(v)
1−ε ≥ `

′′}

Analysis The following lemma shows the properties of the collection T̃OP(K,G).

Lemma 8 With probability at least 1− δ,

1. TOP(K,G) ⊆ T̃OP(K,G), and
2. for all v ∈ TOP(K,G) we have |b̃′′(v)− b(v)| ≤ εb(v), and
3. no vertex u ∈ T̃OP(K,G) \ TOP(K,G) has an estimated betweenness greater

than `′(1 + ε).

Proof We start by proving 1. From Thm. 1 we know that, with probability at least
1− δ′, a sample of size r′ is a ε-approximation to (RG, πG) and from Thm. 2 we
have that with probability at least 1 − δ′′ a sample of size r′′ is a relative (`′, ε)-
approximation to (RG, πG). Suppose both these events occur, which happens with
probability at least 1− δ. Then it is easy to see that `′ ≤ b(vK), as there must be
at least K vertices with exact betweenness greater or equal to `′. Consider now
`′′. Following the same reasoning as for `′, it should be clear that `′′ ≤ b(vK). The
vertices included in T̃OP(K,G) are all and only the vertices that may have exact
betweenness at least `′′, which implies that all vertices that have exact betweenness
at least b(vK) are included in T̃OP(K,G). Points 2 and 3 in the thesis follow from
the properties of the relative (`′, ε)-approximation (Def. 5), and this concludes our
proof.

The advantage of using our algorithm to approximate the collection of top-K
betweenness vertices is the very high-quality of the approximation of the between-
ness values for the returned set of vertices: all estimations within a multiplicative
factor ε from their exact values. Previous algorithms were only able to approxi-
mate the betweenness values to within an additive error ε. The cost of computing
the high quality approximation for the top-K vertices is the cost of an additional
run of our algorithm to compute good approximations for all the vertices.
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5.3 Discussion

Jacob et al [22] and independently Brandes and Pich [13] present a sampling-
based algorithm to approximate the betweenness centrality of all the vertices of
the graph. The algorithm (which we call BP) creates a sample S = {v1, . . . , vr} of
r vertices drawn uniformly at random and computes all the shortest paths between
each vi to all other vertices in the graph. Their estimator b̃BP(u) for b(u) is

b̃BP(u) =
1

(n− 1)r

∑
vi∈S

∑
w 6=vi
w 6=u

∑
p∈Sviw

1Int(p)(u)

|Sviw|
.

As it was for Algorithm 1, the key ingredient to ensure a correct approximation for
the betweenness centrality is the computation of the sample size r. Inspired by the
work of Eppstein and Wang [17], Brandes and Pich [13] prove that, to obtain good
additive (within ε) estimations for the betweenness of all vertices with probability
at least 1− δ, it must be

r ≥ 1

2ε2

(
lnn+ ln 2 + ln

1

δ

)
.

From this expression it should be clear that this sample size is usually much larger
than ours, as in practice VD(G) � n. For the same reason, this algorithm would
not scale well as the network size increases (see also Sect. 7).

Another interesting aspect in which our algorithm and BP differ is the amount
of work done per sample. Our algorithm computes a single set Suv for the sampled
pair of vertices (u, v): it performs a run of Dijkstra’s algorithm (or of BFS) from u,
stopping when v is reached. BP instead computes all sets Suw from the sampled
vertex u to all other vertices w ∈ V , again with a single run of Dijkstra or BFS,
but without the “early-stopping condition” approach that our algorithm takes when
reaching v. Although in the worst case the two computations have the same time
complexity4, in practice we perform many fewer operations, as we can expect v not
to always be very far from u and therefore we can terminate early. This fact has
a huge impact on the running time. Our algorithm also touches many fewer edges
than BP. The latter may touch all the edges in the graph at every sample, while
our computation exhibits a much higher locality, exploring only a neighborhood
of u until v is reached. The results of our experimental evaluation presented in
Sect. 7 highlights this and other advantages of our method over the one by Jacob
et al [22] and Brandes and Pich [13]. Using bidirectional A∗ search [23, 38] can
further speed up the computation for each sample of our algorithms.

The analysis of Algorithm 1 allow us to obtain a tighter analysis for the algo-
rithm by Brandes and Pich [13] and Jacob et al [22].

Lemma 9 Fix r > 0 and let w ∈ V . Let b̃BP(w) be the estimation of the between-
ness b(w) as computed by BP using r samples, and let b̃(w) be the estimation
computed by Algorithm 1 using r samples. For any value of b(w) and r, we have

Var[b̃BP(w)] ≤ Var[b̃(w)] .

4 It is a well-known open problem whether there is an algorithm to perform a single s, t-
shortest path computation between a pair of vertices with smaller worst-case time complexity
than the Single Source Shortest Path computation.
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Proof Consider the quantity

Var[b̃(w)]−Var[b̃BP(w)] .

We will show that the above quantity is greater than or equal to 0, proving the
thesis. Since E[b̃(w)] = E[b̃BF(w)] = b(w) and using the definition of variance, we
only need to show

E[(b̃(w))2]− E[(b̃BF(w))2] ≥ 0 . (4)

Let start from computing E[(b̃BF(w))2]. For every vertex v, we define αv as

αv =
1

n− 1

∑
u∈V
u6=v

∑
p∈Svu

1Int(p)(w)

σvu
.

Note that

b(w) =
1

n

∑
v∈V

αv . (5)

Let Xi, for 1 ≤ i ≤ r, be the contribution to b̃BP(w) of the paths computed
from the ith sampled vertex. Xi is a random variable that takes value αv with
probability 1/n, for all v ∈ V . We have

E[Xi] =
1

n

∑
v∈V

αv = b(w) and E[X2
i ] =

1

n

∑
v∈V

α2
v,∀1 ≤ i ≤ r . (6)

Clearly

b̃BP(w) =
1

r

r∑
i=1

Xi .

The variables Xi’s are independent and identically distributed so

E[(b̃BP(w))2] =
1

r2
E

[(
r∑
i=1

Xi

)2]
=

1

r2

r∑
i=1

E[X2
i ] + 2

r∑
j=i+1

(E[Xi]E[Xj ])


=

1

r

1

n

∑
v∈V

α2
v +

r − 1

r
(b(w))2, (7)

where we used (6).
We now compute E[(b̃(w))2]. Consider the contribution Yi to b̃(w) of the ith

sampled path by Algorithm 1, for 1 ≤ i ≤ r. Yi is a random variable that takes
value 1Int(p)(w) with probability π(p), for every shortest path p ∈ SG. We have

E[Yi] = E[Y 2
i ] = b(w),∀1 ≤ i ≤ r . (8)

By definition,

b̃(w) =
1

r

r∑
i=1

Yi .
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The random variables Yi are independent and identically distributed so

E[(b̃(w))2] = 1

r2
E

[(
r∑
i=1

Yi

)2]
=

1

r2

r∑
i=1

E[Y 2
i ] +

r∑
j=i+1

E[Yi]E[Yj ]


=

1

r
b(w) +

r − 1

r
(b(w))2, (9)

where we used (8).
We can now rewrite the left side of (4) using (5), (7), and (9):

E[(b̃(w))2]− E[(b̃BF(w))2] =
1

r
b(w) +

r − 1

r
(b(w))2 − 1

r

1

n

∑
v∈V

α2
v −

r − 1

r
(b(w))2

=
1

r

1

n

∑
v∈V

(αv − α2
v) .

Since αv ∈ [0, 1], we have αv − α2
v ≥ 0 for all v, and our proof is complete.

The following lemma is an easy consequence of the above.

Lemma 10 BP has lower expected Mean Squared Error than Algorithm 1:

E[MSEBP] ≤ E[MSE] .

Proof We have

E[MSEBP] = E

[
1

n

∑
w∈V

(
b̃BP(w)− b(w)

)2]
=

1

n

∑
w∈V

E
[(

b̃BP(w)− b(w)
)2]

=
1

n

∑
v∈V

Var[b̃BP(w)],

where we used the linearity of expectation and the fact that the estimator b̃BP(w)
is unbiased for b(w) (E[b̃BP(w)] = b(w)]). Analogously for Algorithm 1:

E[MSE] =
1

n

∑
v∈V

Var[b̃(w)] .

Hence
E[MSE]− E[MSEBP] =

1

n

∑
v∈V

(
Var[b̃(w)]−Var[b̃BP(w)]

)
,

and from Lemma 9 we have that each addend of the sum is non-negative and so
is the above expression, concluding our proof.

The estimator b̃BP(w) has lower variance and MSE than b̃(w), which means
that it can give better estimations of the betweenness values in practice using
the same number of samples. Before always opting for BP (or for the algorithm
by Geisberger et al [19], whose estimators have even lower variance than those of
BP) with a number of samples equal to the one in (3), one should nevertheless
take into account two facts. Firstly, we do not currently have a proof that for a
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number of samples as in (3), algorithm BP (or the algorithm by Geisberger et al
[19]) computes an high-quality (within ±ε) approximation of the betweenness of
all vertices with probability at least 1− δ. We conjecture this fact could be proven
using pseudodimension [4, Chap. 11]. Secondly we already argued that per sample,
the computation of b̃BP(w) requires more time than the one for b̃(w). The difference
could be even larger when Algorithm 1 uses bidirectional search [23, 38].

We can conclude this discussion stating that Algorithm 1, BP, and the algo-
rithm by Geisberger et al [19] share the same design principles, but choose different
trade-offs between accuracy and speed.

6 Variants of betweenness centrality

It is possible to extend our results to a number of variants of betweenness central-
ity. For some of them, like the parametric variant for weighted networks defined
by Opsahl et al [35], the extension is straightforward and immediate. For others,
some caution is necessary. We report here some of the extensions that we consider
more interesting, to give an intuition of how to extend our results to other variants.

6.1 k-bounded-distance betweenness

A “local” variant of betweenness, called k-bounded-distance betweenness5 considers
the contribution only of the shortest paths that have size up to k+1 [10, 12]. For
k > 1 and any pair of distinct vertices u, v ∈ V , u 6= V , let S(k)

uv ⊆ Suv be the set
of shortest paths from u to v that have size at most k + 1:

S(k)
uv = {p ∈ Suv : |p| ≤ k + 1 and p goes from u to v} .

Let σ(k)
uv = |S(k)

uv |, and let S(k)G be the union of all the S(k)
uv . Let T (k)

v ⊆ Tv be the
set of all shortest paths that have size up to k and that v is internal to, for each
v ∈ V :

T (k)
v = {p ∈ Tv : |p| ≤ k and v ∈ Int(p)} .

Definition 6 [10, 12] Given a graph G = (V,E) and an integer k > 1, the k-
bounded-distance betweenness centrality of a vertex v ∈ V is defined as

bb(k)(v) =
1

n(n− 1)

∑
puw∈S

(k)
G

1T (k)
v

(p)

σ
(k)
uw

.

For the case of k-bounded-distance betweenness, if we let R(k)
G = {T (k)

v : v ∈
V }, it is easy to bound VC(R(k)

G ) following the same reasoning as in Lemma 1.

Lemma 11 VC(R(k)
G ) ≤ blog2(k − 1)c+ 1.

5 Bounded-distance betweenness is also known as k-betweenness. We prefer the former de-
nomination to avoid confusion with k-path betweenness as defined by Kourtellis et al [24].
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Given this result, the sample size on line 6 of Alg. 1 can be reduced to

r =
c

ε2

(
blog2(k − 1)c+ 1 + ln

1

δ

)
and the computation of the shortest paths on line 8 can be stopped after having
reached the vertices that are k “hops” far from u.

6.2 k-path betweenness

Another interesting variant of betweenness centrality does not consider shortest
paths, but rather simple random walks of size up to k+1, expressing the intuition
that information in a network does not necessarily spread across shortest paths
but has a high probability of “fading out” after having touched at most a fixed
number of vertices.

Definition 7 ([24]) Given a graph G = (V,E) and a positive integer k, the k-
path centrality pb(k)(v) of v ∈ V is defined as the average6, over all possible source
vertices s, of the probability that a simple random walk originating from s and
stopping after having touched (at most) k + 1 vertices (s included) goes through
v.

We can define another range setRp,k
G if we are interested in k-path betweenness.

The domain B of the range set now is the set of all simple random walks starting
from any vertex of and of size up to k+1. For each vertex v ∈ V , the range Rv is
the subset of B containing only the random walks from B that have v as internal
vertex. It is easy to see that VC(Rp,k

G ) is at most blog2(k − 1)c+ 1, following the
same reasoning as in Lemma 1 and Lemma 11.

For the case of k-path betweenness, the algorithm is slightly different: for

r =
c

ε2

(
blog2(k − 1)c+ 1 + ln

1

δ

)
iterations, rather than sampling a pair of vertices (uv), computing Suv, and then
sampling a shortest path between them, we first sample a single vertex and an
integer ` uniformly at random from [1, k + 1]. We then sample a simple random
walk touching ` vertices, while updating the estimated betweenness of each touched
vertex by adding 1/r to its estimation. The method to sample a simple random
walk is described by Kourtellis et al [24].

Kourtellis et al [24] show that this algorithm can estimate, with probability
at least 1 − 1/n2, all the k-path betweenness values to within an additive error
n−1/2+α/(n− 1) using 2n1−2αk2 lnn samples, for α ∈ [−1/2, 1/2]. We can obtain
the same guarantees with a much lower number r of samples, specifically

r = 2n1−2α

(
lnn+

blog2(k − 1)c+ 1

2

)
.

In summary we presented a tighter analysis of the algorithm by Kourtellis et al
[24].

6 We take the average, rather than the sum, as defined in the original work by Kourtellis et al
[24], to normalize the value so that it belongs to the interval [0, 1]. This has no consequences
on the results.
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(a) Undirected graphs

TimeBP
TimeVC

Graph Properties diam-2approx

Graph |V | |E| VD(G) min max

oregon1-010331 10,670 22,002 9 4.39 4.75
oregon1-010526 11,174 23,409 10 4.26 4.73

ca-HepPh 12,008 237,010 13 3.06 3.33
ca-AstroPh 18,772 396,160 14 3.26 3.76
ca-CondMat 23,133 186,936 15 3.75 4.08
email-Enron 36,692 421,578 12 3.60 4.16

(b) Directed graphs

TimeBP
TimeVC

Graph Properties diam-exact diam-UB

Graph |V | |E| VD(G) min max min max

wiki-Vote 7,115 103,689 7 3.35 3.69 1.05 1.27
p2p-Gnutella25 22,687 54,705 11 5.45 5.78 1.94 2.09

cit-HepTh 27,770 352,807 14 3.58 3.83 1.39 1.61
cit-HepPh 34,546 421,578 12 4.91 5.01 1.60 1.71

p2p-Gnutella30 36,682 88,328 10 5.02 5.46 2.08 2.22
soc-Epinions1 75,879 508,837 13 4.20 4.25 1.35 1.38

Fig. 7: Graph characteristics and running time ratios.

6.3 Edge betweenness

Until now we focused on computing the betweenness centrality of vertices. It is
also possible to define a betweenness centrality index for edges of a graph G =
(V,E) [3, 12]. Edge betweenness is useful, for example, to develop heuristics for
community detection [34]. Given e ∈ E, the edge betweenness eb(e) of e is defined
as the fraction of shortest paths that contain e, meaning that if e = (u, v), then a
path p contains e if u and v appear consecutively in p. Formally,

eb(e) =
1

n(n− 1)

∑
puv∈SG

1puv (e)

σuv
,∀e ∈ E .

We can then define a range space ERG that contains |E| ranges Re, one for each
e ∈ E, where Re is the set of shortest paths containing the edge e. By following
the same reasoning as Lemma 1 we have that VC(ERG) ≤ b(log2(VD(G)−1)c+1.
Using this result we can adapt the sample sizes for Alg. 1 and 2 to compute good
approximations of betweenness for the (top-k) edges.

7 Experimental evaluation

We conducted an experimental evaluation of our algorithms, with two major driv-
ing goals in mind: study the behavior of the algorithms presented in this paper
and compare it with that of other related algorithms [11, 13, 19, 22], in terms
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of accuracy of the estimation, execution time, work performed, and scalability as
function of the network size.

Implementation and environment We implemented our algorithms7, the one pre-
sented by Brandes and Pich [13] and Jacob et al [22] and the linear scaling version
by Geisberger et al [19] in C, by extending the implementation of the exact algo-
rithm [11] contained in igraph [15]. The implementations are similarly engineered,
given that they are based on the same subroutines for the computation of the short-
est path (Dijkstra’s algorithm for weighted graphs, BFS for unweighted ones), and
they received similar amounts of optimization. We exposed our implementations
through Python 3.3.1, which was used for running the simulations. We run the
experiments on a quad-core AMD Phenom™II X4 955 Processor with 16GB of
RAM, running Debian wheezy with a Linux kernel version 3.2.0.

Datasets In our evaluation we used a number of graphs from the Stanford Large
Network Dataset Collection8. These are all real world datasets including online
social networks, communication (email) networks, scientific citation and academic
collaboration networks, road networks, Amazon frequent co-purchased product
networks, and more. Basic information about the graphs we used are reported in
the two leftmost columns of Figs. 7b and 7a. We refer the reader to the SLNDC
website for additional details about each dataset. To evaluate scalability we also
created a number of artificial graphs of different sizes (1,000 to 100,000 vertices)
using the Barabási-Albert model [6] as implemented by igraph [15].

Diameter approximation As we discussed in the previous sections the number of
samples that the proposed algorithm requires depends on the vertex-diameter of
the graph. For the computation of the vertex-diameter in case of undirected graphs
we used the 2-approximation algorithm that we briefly described in Sect. 5. We
denote this as “diam-2-approx” when reporting results in this section. For directed
graphs, we computed the number of samples using both the exact value of the
vertex-diameter (indicated as diam-exact) as well as the trivial upper bound |V |−2
(indicated as diam-UB).

7.1 Accuracy

Our theoretical results from Sect. 5 guarantee that, with probability at least 1−δ,
all estimations of the betweenness values for all vertices in the graph are within ε
for their real value. We run Algorithm 1 five times for each graph and each value of
ε in {0.01, 0.015, 0.02, 0.04, 0.06, 0.08, 0.1}. The parameter δ was fixed to 0.1 and we
used c = 0.5 in (1) to compute the sample size, as suggested by Löffler and Phillips
[29]. As far as the confidence is concerned, we report that in all the hundreds of runs
we performed, the guarantee on the quality of approximation was always satisfied,
not just with probability 1−δ (= 0.9). We evaluated how good the estimated values
are by computing the average estimation error (

∑
v∈V |b(v)−b̃(v)|)/|V | across five

7 The implementations are available at http://cs.brown.edu/~matteo/centrsampl.tar.
bz2. An independent implementation of our algorithms is available in NetworKit [44].

8 http://snap.stanford.edu/data/index.html

http://cs.brown.edu/~matteo/centrsampl.tar.bz2
http://cs.brown.edu/~matteo/centrsampl.tar.bz2
http://snap.stanford.edu/data/index.html
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(a) p2p-Gnutella30 (directed)

(b) soc-Epinions1 (directed)

(c) ca-HepPh (undirected)

(d) email-Enron (undirected)

Fig. 8: Betweenness estimation absolute error |b̃(v)− b(v)| evaluation for directed
and undirected graphs as function of ε. The reported quantities are: average error,
maximum error, and the sum between average and standard deviation. For directed
graphs, two versions of these quantities are reported, one for runs of the algorithm
using the exact vertex diameter, and one for runs using an upper bound to it. For
undirected graph we report the quantities for runs that used the 2-approximation
to the vertex diameter. For the BP algorithm, we only report the average.
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(a) p2p-Gnutella30 (directed)

(b) soc-Epinions1 (directed)

(c) ca-HepPh (undirected)

(d) email-Enron (undirected)

Fig. 9: Comparison of the running time (in seconds) between VC, BP, and the
exact algorithm, as functino of ε. For directed graphs, the running time of VC is
reported twice: one for runs using the exact vertex diameter, and one for runs using
an upper bound to this quantity. For undirected graphs we report the running time
of VC using the 2-approximation to the diameter.
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runs of our algorithm and taking the average and the standard deviation of this
measure, for different values of ε. We also compute the maximum error |b(v)−b̃(v)|
overall. The results are reported in Fig. 8a for the directed graph p2p-Gnutella30,
in Fig. 8c for the undirected graph ca-HepPh, in Fig. 8b for the undirected graph
soc-Epinions1, and in Fig. 8d for the undirected graph email-Enron. It is evident
that the maximum error is an error of magnitude smaller than the guaranteed
value of ε and that the average error is almost two orders of magnitude smaller
than the guarantees, and the Avg+Stddev points show that the estimation are quite
concentrated around the average. We can conclude that in practice the algorithm
performs even better than guaranteed, achieving higher accuracy and confidence
than what the theoretical analysis indicates. This is due to a number of factors,
for example the fact that we use an upper bound to the VC-dimension of the range
set and that the sample size is therefore an upper bound to the one necessary to
obtain the desired approximation guarantees.

We also report in the figures the error for the algorithm by Brandes and Pich
[13], Geisberger et al [19], Jacob et al [22] (denoted as BP). We report this results
for the original version of the algorithm, using a sample size that depends on the
number of nodes in the graph. As expected, the error is much lower than that
for our algorithm, but that is because BP uses an unnecessary large number of
samples because its analysis is extremely loose. Moreover, as we explain in the
following section, its runtime is also much higher than that of our algorithm.

Accuracy for the top-K algorithm. We also evaluated our algorithm for a higher-
quality approximation of TOP(K,G) (Sect. 5.2). In Fig. 10 we report the accuracy
results for the graph as function of k for the graph ca-HepTh and fixed values of
ε = 0.05 and δ = 0.1 (the behavior for other values of ε is similar to that we already
discussed for the absolute approximation algorithm). We measured the relative
confidence error, defined as |b̃(v)− b(v)|/b(v). While the average of this quantity
is almost an order of magnitude smaller than ε, the maximum is quite close to
the maximum allowed error 0.05, meaning that our sample size is not excessively
large, but rather quite close to the smallest sufficient size. Nevertheless, in all our
runs, the output always respected the requirements of Lemma 8, not just with
probability 1−δ, for reasons similar to those mentioned for the absolute case. The
size of the output set was always at most one error of magnitude greater than k.
Notice that we can not give guarantees neither on the size of the output, nor on
the ranking of the vertices, as these properties depend on the distribution of the
betweenness values: if many vertices have betweenness value close to each other
and/or close to the value of the top-k-th, then their relative order may be inverted
and/or they may be included in the output set. Indeed it is for this reason that
the behavior of the error showed in Fig. 10 does not behave monotonically, as the
aggregates are computed on different sets for different values of k.

7.2 Runtime

We compared the running time of Algorithm 1 (denoted in the following as VC
to that of BP, and to that of the exact algorithm by Brandes [11]. As VC and
BP give the same guarantees on the accuracy and confidence of the computed
estimations, it makes sense to compare their running times to evaluate which
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Fig. 10: Betweenness estimation relative error |b̃(v) − b(v)|/b(v) evaluation for
the top-k algorithm as function of k. The reported quantities are: average error,
maximum error, and the sum between average and standard deviation. We report
the quantities for runs that used the exact vertex diameter.

is faster in achieving the goal. The algorithm proposed by Geisberger et al [19]
takes the same time as BP, because it follows the same sampling approach and
only differs in the definiton of the estimator for the betweenness, so we do not
report those. The algorithms VC and BP take parameters ε and δ and compute
the sample size accordingly. We run each experiments five times for each value
of ε, and measured the average running time across the runs. The results are
presented in Figs. 7 and 9. In Fig. 7a we report the minimum and the maximum
ratio of the running time of BP over VC, taken over the ratios obtained by running
the algorithms with the different values of ε. As it can be seen from this table
our algorithm performs significantly faster, more than 300%. Similar results are
reported for directed graphs in Fig. 7b. The diam-UB and the diam-exact values
can be seen as the two extremes for the performance of Algorithm 1 in terms of
runtime. In the case of the diam-exact we have as few samples as possible (for
VC) since we use the exact value of the vertex-diameter, whereas in the case of
diam-UB we have as many samples as possibles because we use the worst case
estimation for the vertex-diameter of the graph. From Fig. 7a we can see that the
value for the vertex-diameter that we consider in the case of diam-UB (|V | − 2)
is many orders of magnitudes greater than the actual value, which translates in a
significant increase of the number of samples. But even in the case of this crude
vertex-diameter approximation (diam-UB), the VC algorithm performs uniformly
faster than BP. In the case where the exact value of the diameter was used, we can
see that our algorithm computes an estimation of the betweenness that satisfies the
desired accuracy and confidence guarantees 3 to 5 times faster than BP. In Fig. 9a
we study the directed graph p2p-Gnutella30 and we present the measurements of
the average running time of the algorithms for different values of ε, using the exact
algorithm by Brandes [11] as baseline. The VC algorithm requires significantly less
time than the BP algorithm. The figure also shows that there are values of ε for
which BP takes more time than the exact algorithm, because the resulting sample
size is larger than the graph size. Given that VC uses fewer samples and does fewer
operations per sample, it can be used with lower ε than BP, while still saving time
compared to the exact computation. Figure 9d shows the average running time
of the algorithms for the undirected graph email-Enron. The behavior is similar
to that for the undirected case. Algorithm 1 is faster than BP for two reasons,
both originating from from our use of results from the VC-dimension theory: 1)
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we use a significantly smaller amount of samples anda 2) VC performs the same
amount of computations per sample as BP only in the worst case. Indeed our
algorithm needs only to find the shortest path between a sampled pair of vertices,
whereas the algorithms from [13, 19] need to compute the shortest paths between a
sampled source and all the other vertices. Since the running time of the algorithms
is directly proportional to the number of edges touched during the shortest path
computation, the use of bidirectional A* search [23, 38] can help in lowering the
number of touched edges for VC and therefore the runtime of our algorithm (BP
would not benefit from this improvement).

Fig. 11: Comparison of scalability (running time in seconds) between VC and BP
on random undirected Barabási-Albert [6] graphs, as function of the number of
vertices in the graph. We report the running time for runs of VC using the 2-
approximation to the vertex diameter.

7.3 Scalability

In Sect. 5.3 we argued about the reasons why Algorithm 1 is more scalable than BP,
while still offering the same approximation guarantees. To evaluate our argument
in practice, we created a number of graphs of increasing size (1,000 to 100,000
vertices) using the Barabási-Albert [6] and run the algorithms on them, measuring
their running time. We report the results in Fig. 11. The most-scalable algorithm
would be completely independent from the size (number of vertices) of the graph,
corresponding to a flat (horizontal) line in the plot. Therefore, the less steep the
line, the more independent from the network size would be the corresponding
algorithm. From the figure, we can confirm that this is the case for VC, which is
much more scalable and independent from the size of the sample than BP. This is
very important, as today’s networks are not only huge, but they also grow rapidly,
and algorithms to mine them must scale well with graph size.
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8 Conclusions

In this work we presented two random-sampling-based algorithms for accurately
and efficiently estimate the betweenness centrality of the (top-K) vertices in a
graph, with high probability. Our algorithms are based on a novel application
of VC-dimension theory, and therefore take a different approach than previous
ones achieving the same guarantees [13, 19, 22]. The number of samples needed
to approximate the betweenness with the desired accuracy and confidence does
not depend on the number of vertices in the graph, but rather on a characteristic
quantity of the network that we call vertex-diameter. In some cases, the sam-
ple size is completely independent from any property of the graph. Our methods
can be applied to many variants of betweenness, including edge betweenness. Our
algorithms perform much less work than previously presented methods. As a conse-
quence, they are much faster and scalable, as verified in the extensive experimental
evaluation using many real and artificial graphs.

A number of recent works focus on algorithms for computing and keeping track
of betweenness centrality on evolving graphs [7, 8, 25, 47]. This is an important
question as networks evolve in time. Our algorithm has been used as the funda-
mental building block of one of these algorithms [7, 8], suggesting that our work
is applicable beyond its original setting.
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