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ABSTRACT
The availability of massive datasets has highlighted the need of
computationally efficient and statistically-sound methods to ex-
tracts patterns while providing rigorous guarantees on the quality
of the results, in particular with respect to false discoveries. In this
tutorial we survey recent methods that properly combine computa-
tional and statistical considerations to efficiently mine statistically
reliable patterns from large datasets. We start by introducing the
fundamental concepts in statistical hypothesis testing, including
conditional and unconditional tests, which may not be familiar to
everyone in the data mining community. We then explain how the
computational and statistical challenges in pattern mining have
been tackled in different ways. Finally, we describe the application
of these methods in areas such as market basket analysis, subgraph
mining, social networks analysis, and cancer genomics.

CCS CONCEPTS
•Mathematics of computing→ Contingency table analysis;
• Information systems→ Data mining.
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1 INTRODUCTION
The extraction of patterns from data has traditionally been ap-
proached from two different directions: one focusing on compu-
tational aspects, typical of data mining, which assumes that the
data is the complete representation of a process/system, and one
focusing on inferential aspects, typical of statistics, which considers
the data as a partial and noisy collection of measurements of the
underlying process/system, and which evaluates the significance
of a pattern using the rigorous framework of statistical hypothe-
sis testing. While these two points of view are deeply related, the
methods developed focusing on the computational aspects have
neglected the inferential aspects, and vice versa, with almost no
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connection till recent years. The availability of massive and rich
datasets, where a gargantuan number of patterns needs to be pro-
cessed and evaluated, has highlighted the need for computationally
efficient methods that properly assess the statistical soundness of
candidate patterns in order to avoid false discoveries. The devel-
opment of such methods poses severe challenges from both the
computational and the statistical side, since the multitude of candi-
date patterns, each corresponding to an hypothesis regarding the
underlying process/system, leads to a severe multiple hypothesis
testing problem. Various methods have been proposed to tackle
such challenges by properly integrating computational and statis-
tical considerations in the mining process. These methods have
already been successfully applied in several areas, ranging from
social networks to cancer genomics. The relevance of this area of
research will only increase as analysts want to extract more and
more complex patterns from larger and larger datasets.

2 TUTORIAL OUTLINE
We start with an introduction to the fundamental concepts behind
statistical hypothesis testing [27, Ch. 10], and the key questions that
will be answered in the rest of the tutorial. In particular, we first
introduce the framework of testing a single hypothesis (defining,
e.g., what a null hypothesis is) and example applications where
testing hypothesis is crucial, such as in biomedical research and in
the study of social networks. We then discuss fundamental tests
such as Fisher’s exact test [7] and the related χ2 and Barnard’s
test [2]. We also briefly mention A/B testing, although the focus
of the tutorial is on pattern mining where such tests are rarely
used. The final part of the introduction covers issues arising from
testing multiple hypotheses on the same data and how to address
these issues: we outline how and why the probability of discovering
false positives grows in such scenarios, and how to control for this
growth by bounding different metrics, such as the Family-Wise
Error Rate (FWER) [5, 13] and the False Discovery Rate (FDR) [3, 4].

In the central part, we focus on mining statistically-sound pat-
terns. We first define the problem and highlight its computational
and statistical challenges arising from the combinatorial explosion
of the number of hypotheses being tested and from the sheer size
of data [11, 24, 30]. We then tackle these challenges one by one. We
discuss how to make the process of finding statistically significant
patterns efficient from a computational point of view [9, 18, 20, 25].
Specifically, we discuss efficient permutation testing [9, 18], the
groundbreaking LAMP method [25] which allows to apply Tarone
[24]’s method to combinatorial patterns, TopKWY [20], which effi-
ciently extracts the k most statistically significant patterns while
preserving guarantees on the FWER, and SPuManTE [19], which
enables significant pattern mining with unconditional tests. The
statistical efficiency is covered next: the works presented here [15,
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22, 28, 29] introduce different methods to increase the statistical
power of methods to extract significant patterns while controlling
the FWER, and to deal with different inferential aspects of pattern
mining. This part is the core of our tutorial: in these works, statistics
and data mining come together and create a positive multiplier to
obtain fast and statistically-sound methods for pattern mining.

We then overview other interestingness measures and classes
of patterns which, although not based on hypothesis testing, are
grounded in statistics and therefore relevant to this tutorial, such as
emerging [17] and discriminative patterns [12], significant associa-
tion rules [10], and subgroups [1]. All these patterns are interesting
on their own, and their presentation allows us to perform a com-
parison of different approaches. A discussion of applications of the
presented methods, ranging from the mining of significant sub-
graphs and motifs from large graphs [23], to biomedicine [26] and
computational biology [8], will be provided.

In the final third part, we focus on more advanced material.
Specifically, we show how to remove the assumptions on the data
generating process [6], which have classically been used tomake the
problem more tractable. We also discuss how to weight hypotheses
in a data-dependent way, with the goal of increasing the statistical
power [14]. The materials covered here are recent developments
that should interest the attending researchers, as will the potential
future directions that complete the tutorial.

The outline of the tutorial is the following.

1. Introduction and Theoretical Foundations
1.1 Testing a single hypothesis: setting, basic concepts, and

applications [27, Ch. 10]
1.2 Fundamental tests: Fisher’s test [7], χ2 test [27, Section

10.3], Barnard’s test [2], A/B testing [16]
1.3 The challenge of testing multiple hypotheses: Family-Wise

Error Rate [5] and False Discovery Rate [3]
1.4 Taming the challenge: the Bonferroni-Holm procedure [13]

and the Benjamini-Yekutieli correction [4]
2. Mining Statistically-Sound Patterns
2.1 Computational and statistical challenges in patternmining

[11, 24, 30]
2.2 Computational aspects: LAMP [25], permutation testing [9,

18], TopKWY [20], SPuManTE [19]
2.3 Statistical aspects: hold-out approach and layered critical

values [28, 29], a threshold for significant pattern min-
ing [15], true frequent itemsets [22]

2.4 Other statistical measures: emerging patterns [17], dis-
criminative patterns [12], significant association rules [10],
significant subgroups [1]

2.5 Applications: subgraph mining [23], cancer genomics [26],
computational biology [8], and survival analysis [21]

3. Recent developments and advanced topics
3.1 Removing assumptions on the data generating process [6]
3.2 Data-dependent hypothesis weighting [14]
3.3 Conclusions, future directions, and discussion
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