Centrality Measures on Big Graphs:

Exact, Approximated, and Distributed Algorithms

Francesco Bonchil?
Gianmarco De Francisci Morales?
Matteo Riondato*
1SI Foundation, Turin (ltaly)
2Eurecat, Technological Center of Catalonia, Barcelona (Spain)
3Qatar Computing Research Institute, Doha (Qatar)

4Two Sigma Investments LP, NYC (USA)

WWW'16 — Montréal, April 11-15, 2016



Slides available at

http:/ /matteo.rionda.to/centrtutorial /




Acknowledgements

Paolo Boldi

Andreas Kaltenbrunner
Evgenios M. Kornaropoulos
Nicolas Kourtellis

Eli Upfal

Sebastiano Vigna



Roadmap

Introduction

= motivation, history, and definitions

= closeness and betweenness centrality

= axioms: what to look for in a centrality measure
Exact algorithms

= exact algorithms on static graphs
= exact algorithms on dynamic graphs

Approximation algorithms

= approximation algorithms on static graphs
= approximation algorithms on dynamic graphs

Conclusions
= open problems and research directions



Introduction




Social network analysis

Social network analysis is the study of social entities and their
interactions and relationships
The interactions and relationships can be represented with a
network or graph,

= each vertex represents an actor

= each link represents a relationship
From the graph, we can study the properties of its structure,
and the role, position, and prestige of each social entity.

We can also find various kinds of sub-graphs, e.g.,
communities formed by groups of actors.



Centrality in networks

Important or prominent actors are those that are extensively
linked or involved with other actors

A person with extensive contacts (links) or communications
with many other people in the organization is considered more
important than a person with relatively fewer contacts

A central actor is one involved in many ties

Graph centrality is a topic of uttermost importance in social
sciences

Also related to the problem of ranking in the context of Web
Search:

= Each webpage is a social actor

= Each hyperlink is an endorsement relationship

= Centrality measures provide a query independent link-based
score of importance of a web page



History of centrality (in a nutshell)

= first attempts in the late 1940s at MIT (Bavelas 1946), in the
framework of communication patterns and group
collaboration:

= in the following decades, various measures of centralities were
proposed and employed by social scientists in a myriad of
contexts (Bavelas 1951; Katz 1953; Shaw 1954; Beauchamp
1965; Mackenzie 1966; Burgess 1969; Anthonisse 1971,
Czapiel 1974...) item a new interest raised in the mid-90s
with the advent of search engines: a “reincarnation” of
centrality.

Freeman, 1979

“several measures are often only vaguely related to
the intuitive ideas they purport to index, and many are so
complex that it is difficult or impossible to discover what,
if anything, they are measuring.”




Types of centralities

Starting point: the central vertex of a star is the most important!
Why?
@ the vertex with largest degree;

@® the vertex that is closest to the other vertexes (e.g., that has
the smallest average distance to other vertexes);

© the vertex through which all shortest paths pass;

O the vertex with the largest number of incoming paths of
length k, for every k;

@ the vertex that maximizes the dominant eigenvector of the
graph adjacency matrix;

@ the vertex with highest probability in the stationary
distribution of the natural random walk on the graph.

These observations lead to corresponding competing views of
centrality.



Types of centralities

This observation leads to the following classes of indices of
centrality:

@ measures based on distances [degree, closeness, Lin's index];
@® measures based on paths [betweenness, Katz's index];

© spectral measures [dominant eigenvector, Seeley's index,
PageRank, HITS, SALSA].

The last two classes are largely the same (even if that wasn't fully
understood for a long time.)



Geometric centralities

degree (folklore): cyeg(x) = d™(x)
_ _ _ 1
closeness (Bavelas, 1950): c.ios(x) = ¢(x) = S ()

2

Lin (Lin, 1976): cLin(x) = Zr(;()y 5y Where r(x) is the number
y k)
of vertexes that are co-reachable from x

harmonic (Boldi and Vigna, 2013) cparm(x) = Zwéx m



Path-based centralities

= betweenness (Anthonisse, 1971):
Chet () = b(X) = 20, , 250,40 Uy;—y(zx) where o, is the number
of shortest paths y — z, and 7,,(x) is the number of such
paths passing through x

= Katz (Katz, 1951): ckats(X) = > ,o0 B pe(x) where p(x) is
the number of paths of length t ending in x, and [ is a
parameter (3 < 1/p)



Spectral centralities

= dominant (Wei, 1953): cyom(x) is the dominant (right)
eigenvector of G

= Seeley (Seeley, 1949): cseeley(X) is the dominant (left)
eigenvector of G,

= PageRank (Brin, Page et al., 1999): cpr(x) is the dominant
(left) eigenvector of a G, + (1 — a)171/n (where o < 1)

= HITS (Kleinberg, 1997): cirs(x) is the dominant (left)
eigenvector of G' G

= SALSA (Lempel, Moran, 2001): csarsa(x) is the dominant
(left) eigenvector of G/ G,

Where G denotes the adjacency matrix of the graph, G, is the adjacency

matrix normalized by row, and G, is the adjacency matrix normalized by
column.



Closeness and Betweenness




Closeness centrality

It measures the ability to quickly access or pass information
through the graph;

Definition (Closeness Centrality)

= closeness centrality c(x) of a vertex x

1
Zy#XGV d(y/ X)‘

c(x) =

= d(y, x) is the length of a shortest path between y and x.

= The closeness of a vertex is defined as the inverse of the sum
of the Shortest Path (SP) distances between the vertex and
all other vertexes of the graph.

= When multiplied by n — 1, it is effectively the inverse of the
average SP distance.



Betweenness centrality

It measures the frequency with which a user appears in a shortest
path between two other users.

Definition (Betweennes centrality)

= betweenness centrality b(x)
of a vertex x:

b(x) = Z 75t(x)

g
s#ExFAteV st

s#t

.4‘3.;
Y

Example retrieved from Wikipedia

= 0g: number of SPs from s
tot

= 0s(x): how many of them
pass through x



Betweenness centrality

= Can be defined also for edges (similarly to vertexes)
= Edges with high betweenness are known as “weak ties”
= They tend to act as bridges between two communities

weak ties

The strength of weak ties

(Granovetter 1973) t 4

"% strong

= Dissemination and coordination
dynamics are influenced by links
established to vertexes of
different communities.

= The importance of these links 4
has become more and more with
the rise of social networks and
professional networking
platforms.



Weak ties

Bakshy et al. 2012

Weak links have a greater potential to expose links to new
contacts that otherwise would not have been discovered.

facebook



Weak ties

Grabowicz et al. 2012

= Personal interactions are more likely to occur in internal links
within communities (strong links)

= Events or new information is propagated faster by
intermediate links (weak links).
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Girvan-Newman algorithm for community detection
(Girvan and Newman 2002)

Hierarchical divisive clustering by recursively removing the
“weakest tie":

® Compute edge betweenness centrality of all edges;
® Remove the edge with the highest betweenness centrality;
© Repeat from 1.




Comparison

Which vertex is the most central?

= for Degree Centrality:

= for Closeness Centrality:

= for Betweenness Centrality:
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Comparison

Which vertex is the most central?

= for Degree Centrality: user A

= for Closeness Centrality:

= for Betweenness Centrality:

»
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Comparison

Which vertex is the most central?

= for Degree Centrality: user A

= for Closeness Centrality: users B and C

= for Betweenness Centrality:

»
o~ [ ~a |
-y - N
e DA IS -
A




Comparison

Which vertex is the most central?

= for Degree Centrality: user A

= for Closeness Centrality: users B and C

= for Betweenness Centrality: user D
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Visual Comparison

A Degree Centrality

B Closeness Centrality

C Betweenness Centrality
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Axioms for centrality (Boldi and Vigna 2013)




Assessing

Question

Is there a robust way to convince oneself that a certain centrality
measure is better than another?

Answer

Axiomatization. . .
= ...hard axioms (characterize a centrality measure completely)

= ...soft axioms (like the T; axioms for topological spaces)



Sensitivity to size

Idea: size matters!
Sk.p be the union of a k-clique and a p-cycle.

if kK — oo, every vertex of the clique becomes ultimately
strictly more important than every vertex of the cycle
if p — oo, every vertex of the cycle becomes ultimately
strictly more important than every vertex of the clique




Sensitivity to density

Idea: density matters!
Dy, be made by a k-clique and a p-cycle connected by a single
bidirectional bridge:

= if k — o0, the vertex on the clique-side of the bridge becomes
more important than the vertex on the cycle-side.




Score monotonicity

Adding an edge x — y strictly increases the score of y.

Doesn’t say anything about the score of other vertexes!



Rank monotonicity

Adding an edge x — y. ..
= if y used to dominate z, then the same holds after adding the
edge
= if y had the same score as z, then the same holds after adding
the edge
= strict variant: if y had the same score as z, then y
dominates z after adding the edge



Rank monotonicity

Monotonicity

Other axioms

General Strongly connected
Centrality Score | Rank | Score Rank Size | Density
Harmonic yes | yes* | yes yes* yes yes
Degree yes | yes* | vyes yes* only k yes
Katz yes | yes* | vyes yes* only k yes
PageRank yes | yes* | yes yes* no yes
Seeley no no yes yes no yes
Closeness no no yes yes no no
Lin no no yes yes only k no
Betweenness | no no no no only p no
Dominant no no ? ? only k yes
HITS no no no no only k yes
SALSA no no no no no yes




Kendall's 7

Hollywood collaboration network
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Correlation

most geometric indices and HITS are rather correlated to one
another;

Katz, degree and SALSA are also highly correlated;

PageRank stands alone in the first dataset, but it is correlated
to degree, Katz, and SALSA in the second dataset;
Betweenness is not correlated to anything in the first dataset,
and could not be computed in the second dataset due to the
size of the graph (106M vertices).



Exact Algorithms



Outline

@ Exact algorithms for static graphs
@ the standard algorithm for closeness
@® the standard algorithm for betweenness
© a faster betweenness algorithm through shattering and
compression
@ a GPU-Based algorithm for betweenness

® Exact algorithms for dynamic graphs

@ a dynamic algorithm for closeness
@® four dynamic algorithms for betweenness
© a parallel streaming algorithm for betweenness



Exact Algorithms for Static Graphs



Exact Algorithm for Closeness
Centrality

(folklore)



Exact Algorithm for Closeness

Recall the definition:

Fastest known algorithm for closeness: All-Pairs Shortest Paths

= Runtime: O(nm + n?log n)

Too slow for web-scale graphs!

= Later we'll discuss an approximation algorithm



A Faster Algorithm for Betweenness
Centrality

U. Brandes

Journal of Mathematical Sociology (2001)



Why faster?

Let's take a step back. Recall the definition

Z ost(x)

Ost
s#ExFteV
s#t

= 0g: no. of S (SPs) from s to t
= 0g(x): no. of S from s to t that go through x
We could:
@ obtain all the o4 and o4(x) for all x, s, t via APSP; and then
@® perform the aggregation to obtain b(x) for all x.

The first step takes O(nm + n”log n), but the second step
takes... ©(n®) (a sum of O(n?) terms for each of the n vertices).

Brandes' algorithm interleaves the SP computation with the
aggregation, achieving runtime O(nm + n? log n)
l.e., it is faster than the APSP approach



Dependencies

Define: Dependency of s on v:

Hence:

b(v) = ds(v)

s#v
Brandes proved that d;(v) obeys a recursive relation:

()= Y (1 +48u(w))

g
w:vePs(w) w

We can leverage this relation for efficient computation of
betweenness



Recursive relation

Theorem (Simpler form)

If there is exactly one S from s to each t, then

5(v)= Y (1+55(w))

w:vePs(w)

Proof sketch:
= The SDAG from s is a tree;
= Fix t. v is either on the single S from s to t or not.

= v lies on all and only the SPs to vertices w for which v is a
predecessor (one S for each w) and the SPs that these lie on.
Hence the thesis.

The general version must take into account that not all SPs from s
to w go trough v.



Brandes' Algorithm

@ |Initialize 05(v) to O for each v, s and b(w) to O for each w.
@ lterate the following loop for each vertex s:

@ Run Dijkstra’s algorithm from s, keeping track of o, for each
encountered vertex v, and inserting the vertices in a max-heap
H by distance from s;
@® While H is not empty:
@ Pop the max vertex t in H;
@® For each w € P(t), increment d5(w) by 72 (1 + 0s(t));
© Increment b(t) by d:(t);



Shattering and Compressing
Networks for Betweenness Centrality

A. E. Sanyiice, E. Saule, K. Kaya, U. V. Catalyiirek

SDM '13: SIAM Conference on Data Mining



Intuition

Observations:

= There are vertices with predictable betweenness (e.g., 0, or
equal to one of their neighbors). We can remove them from
the graph (compression)

= Partitioning the (compressed) graph into small components
allows for faster SP computation (shattering)

Idea: We can iteratively compress & shatter until we can't reduce
the graph any more.

Only at this point we run (a modified) Brandes's algorithm
and then aggregate the “partial” betweenness in different
components.



Introductory definitions

Graph G = (V,E)

Induced graph by V/ C V: Gy = (V,E' = V' x V' NE)
Neighborhood of a vertex v: ['(v) ={u : (v,u) € E}
Side vertex: a vertex v such that Gr(,) is a clique

Identical vertices: two vertices u and v such that either
Mu)=T(v)or MNu)U{u}=T(v)U{v}



Compression

Empirical / intuitive observations
= if v has degree 1, then b(v) =0
= if v is a side vertex, then b(v) =0

= if v and v are identical, then b(v) = b(w)

Compression:
= remove degree-1 vertices and side vertices; and

= merge identical vertices



Shattering

= Articulation vertex: vertex v whose deletion makes the graph
disconnected

= Bridge edge: an edge e = (u, v) such that G’ = (V, E \ {e})
has more components than G (u and v are articulation
vertexes)

Shattering:
= remove bridge edges

= split articulation vertices in two copies, one per resulting
component



Example of shattering and compression



Issues

Issues to take care of when iteratively compressing & shattering:

Example of issue

A vertex may have degree 1 only after we removed another vertex:
we can't just remove and forget it, as its original betweenness was
not 0.

Example of issue

When splitting an articulation vertex into component copies, we
need to know, for each copy, how many vertices in other
components are reachable through that vertex.

...and more



Solution

(Sketch)

= When we remove a vertex u, one of its neighbors (or an
identical vertex) v is elected as the representative for v (and
for all vertices that u was a representative of)

= We adjust the (current) values of b(v) and b(u) to
appropriately take into account the removal of u
the details are too hairy for a talk. ..

= When splitting articulation vertices or removing bridges,
similar adjustments take place

= Brandes’ algorithm is slightly modified to take the number of
vertices that a vertex represents into consideration when
computing the dependencies and the betweenness values



Speedup

“org.” is Brandes' algorithm, “best” is compress & shatter

Graph Time (in sec.)
name V| |E| org. best | Sp.
Power 4.9K 6.5K 1.47 0.60 2.4
Add32 4.9K 9.4K 1.50 0.19 7.6
HepTh 8.3K 15.7K 3.48 1.49 2.3
PGPgiant 10.6K 24.3K 10.99 1.55 7.0
Protlnt 9.6K 37.0K 11.76 7.33 1.6
AS0706 22.9K 48.4K 43.72 8.78 4.9
MemPlus 17.7K 54.1K 19.13 9.28 2.0
Luxemb. 114.5K  119.6K 771.47  444.98 1.7
AstroPh 16.7K  121.2K 40.56 19.41 2.0
Gnu3l 62.5K 147.8K 422.09 188.14 2.2
CondMO05 404K  175.6K 217.41 97.67 2.2

geometric mean | 2.8
Epinions 131K 711K 2,193 839 2.6
Gowalla 196K 950K 5,926 3,692 1.6
besstk32 44.6K 985K 687 41 | 16.5
NotreDame 325K 1,090K 7,365 965 7.6
RoadPA 1,088K 1,541K | 116,412 71,792 1.6
Amazon0601 | 403K 2443K | 42,656 36,736 | 1.1
Google 875K  4,322K | 153,274 27,581 5.5
WikiTalk 2,394K  4,659K | 452,443 56,778 7.9

geometric mean | 3.8




Composition of runtime

= Preproc is the time needed to compress & shatter, Phase 1 is
SSSP, Phase 2 is aggregation

= Different column for different variants of the algorithm (e.g.,
only compression of 1-degree vertices, only shattering of
edges)

= the lower the better

1.4 T
l —
Phase 1
1.2 Phase 2 mmmm
Preproc s
1
(]
Eost i
(]
=
£ 0.6 i
[
o
0.4 - B
0.2 - B

o



Betweenness Centrality on GPUs and
Heterogeneous Architectures

A. E. Sanyiice, K. Kaya, E. Saule, U. V. Catalyiirek

GPGPU '13: Workshop on General Purpose Processing Using
GPUs



Parallelism

Fine grained: single concurrent BFS
Only one copy of auxiliary data structures
Synchronization needed

Better for GPUs, which have small memory

Coarse grained: many independent BFSs
Sources are independent, embarrassingly parallel
More memory needed

Better for CPUs, which have large memory



GPU

A GPU is especially well-suited to address problems that
can be expressed as data-parallel computations - the
same program is executed on many data elements in
parallel - with high arithmetic intensity - the ratio of
arithmetic operations to memory operations.

Because the same program is executed for each data
element, there is a lower requirement for sophisticated
flow control, and because it is executed on many data
elements and has high arithmetic intensity, the memory
access latency can be hidden with calculations instead of
big data caches.!

'docs.nvidia.com/cuda/cuda-c-programming-guide/index .html


docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Execution model

Execution Model

Software Hardware

One thread per data element

Thread scheduled in blocks
with barriers (wait for others
at the end)

Program runs on the whole

data (kernel) @@@

Minimize synchronization E——
Block

Thread

Balance load

Coalesce memory access

Device




Intuition

GPUs have huge number of cores
Use them to parallelize BFS
One core per vertex, or one core per edge

Vertex-based parallelism creates load imbalance for graphs
with skewed degree distribution

Edge-based parallelism requires high memory usage

Use vertex-based parallelism
Virtualize high-degree vertices to address load imbalance

Reduce memory usage by removing predecessors lists



Difference

Vertex-based BFS Edge-based BFS



Vertex-based

For each level, for each
vertex in parallel

If VerteX |S on IeVel Algorithm 2: VERTEX: vertex-based parallel BC

£+0

For each neighbor, o pose

adjust P and o SPoruacd-ssep kernel

for each u € V in parallel do

. if d[u] = £ th
Atomic update on ¢ needed : o cfac[h]i"e I() do
3 if d[v] = —1 then
1 dfv £+ 1, cont + true
(mU|t|p|e paths can be e‘lse lf]d([;-] :[7 ! then Pyfu] 1
discovered concurrently) <, if o] = £+1 then olu] % of] + o]
—Ll+1
While backtracking, if “Backiard prace
u € P(v) accumulate CSaciard-step kernel
- for each u € V in parallel do
6(u) = 6(u) +6(v) o | ] ) g
. . . 6 | if Py[u] = 1 then d[u] < d[u] + o[v]
Poss|b|e |Oad |mba|ance |f l.>'U.pdate bc values by using Equation (5)

degree skewed



Edge-based

For each level, for each edge
in parallel

If edge endpoint is on level

Algorithm 3: EDGE: edge-based parallel BC

Same as above...

While backtracking, if

u € P(v) accumulate
6(u) = 0(u) +6(v)
atomically

Multiple edges can try to
update ¢ concurrently
More memory (edge-based
layout) and more atomic
operations

£+0
>Forward phase
while cont = true do
cont + false
bForward-step kernel
for each (u,v) € E in parallel do
if d[u] = ¢ then
| --- >same as vertex-based forward step
L 04+1
>Backward phase
while £ > 1 do
-1
bBackward-step kernel
for each (u,v) € F in parallel do
if d[u] = ¢ then

atgmic ¢

| if Pyfu] =1 then 8u] “*¢" 6[u] + 8[v]

2
>Update bc values by using Equation (5)




Vertex virtualization

AKA, edge batching,

Algorithm 4: VIRTuAL: BC with virtual vertices

hybrid between vertex- and
£+ 0
edge—based bForward phase

while cont = true do

. . . cont < false
Split high degree vertices froraicater ermel - in paraliel do
into virtual ones with AT oy v
. 1 for each v € T'yip(uyir) do
maximum degree mdeg 2 i thon e
. if dv] = ofv] ¥ ofu] + ofu
Equivalently, pack up to S| gy TS ithen ol T ol bl
mdeg edges belonging to sBackuscd phase
the same vertex together ackyand-step kernel
for each virtual vertez uy;, in parallel do
Very small mdeg = 4 P
sum < 0
Need additional auxiliary : o et e sum < sum -+ 30]
8[u] atgmic 8[u] 4+ sum

maps °

sUpdate bc values by using Equation (5)




Benefits

Compared to vertex-based:

= Reduce load imbalance
Compared to edge-based:

= Reduce number of atomic operations

= Reduce memory footprint
Predecessors stored implicitly in the SDAG level (reduced
memory usage)
Memory layout can be further optimized to coalesce latency
via striding:

= Distribute edges to virtual vertices in round-robin

= When accessed in parallel, they create faster sequential
memory access pattern



Results

11
10 O GPU vertex
@ GPU edge
59 T GPU virtual M =
Y g t{ B GPU stride
E=
s
- 7
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s I
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wv 2 u
1
0 -
X > N o 2 3
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o > & 9 Q X
& 3 ° Q & & g
@ N o & & o & 8
S0 ¢ X s @ S
< o('f_, 4@9

Speedup over Brandes' on CPU on real graphs with 32-core GPU
(s = 1k,...,100k)

= Results computed only on a sample of sources and
extrapolated linearly



Exact Algorithms for Dynamic Graphs



A Fast Algorithm for Streaming
Betweenness Centrality

O. Green, R. McColl, D. A. Bader

SocialCom '12: International Conference on Social Computing



Intuition

Make Brandes' algorithm incremental
Keep additional data structures to avoid recomputing partial
results
= Rooted SDAC for each source s € V
= Depth in the tree for t = distance of ¢t from s
Re-run parts of modified Brandes' algorithm on edge update

Support only edge addition (on unweighted graphs)



Data structures

= One SDAG; for each source s € V/, which contains for each
other vertex t € V:
= Distance dg, paths o, dependencies d4(t), predecessors Ps(t)
= Additional per-level queues for exploration

= On addition of edge (u, v), let dd = |ds, — ds|:
= dd = 0 same level
= dd =1 adjacent level
= dd > 1 non-adjacent level



Same level addition

dd =0
Edge creates no new
shortest paths

No change to betweenness
due to this source




Adjacent level addition

dd =1

Let Upjgh = U, Ujowy =V
Edge creates new shortest
paths

SDAG unchanged

Changes in o confined to
sub-dag rooted in ujy,

Changes in ¢ also spread
above to decrease old
dependency and account for
new dependency

Example: w and
predecessors have now only
1/2 of dependency on
sub-dag rooted in wujy,




Algorithm

= Duri I ion:
uring exploration = During backtracking:

= Fix o :
= Mark visited vertices = Fixdand b
= Recurse up the whole
= Enqueue for further
Spac

processing

Stage 2 - BFS traversal starting at u;,, Stage 3 - modified dependency accumulation
while Q not empty do S[v] 0,0 € VV; level + V;

dequeue v < Q; while level>0 do

for all neighbor w of v do while Q[level] not empty do

. dequeue w < Q[level];
if d[w] = (d[v] + 1) then for all v € Plu] do

if t{w] = Not-Touched then if t[v] =Not-Touched then
enqueue w — Qprs; enqueue v — Q[level — 1];
enqueue w — Q[d[w]]; t[v] + Up;
t[w] < Down; L b[v]  8[v);

d[w] + d[v] + 1; Sl e 3ol 4. 21 .
dPw] « dP[v]; O[v] = 0[] + i (1 + 6[uw)):

if t[v] = Up A(v # Unigh V W # Ujoy) then
else L 5[7)] “— (i[’u] - %(1 + 0[w));
| dPw] « dPw] + dP[v]; it w then
&w] + &[w] + dPv); L Cplw] « Cplw] + dw] — d[w);

level « level — 1;

O'T’U] «— 6v],v eVV;




Non-adjacent level addition

dd >1

Edge creates new shortest
paths

Changes to SDAG (new
distances)

Algorithm only sketched
(most details missing)




Complexity

Time: O(n? + nm) + same as Brandes'

In practice, algorithm is much faster

Space: O(n? + nm) <« higher than Brandes’

For each source, a SDAG of complexity n+ m



Results

R-MAT graph speedup
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Speedup over Brandes' on synthetic graphs (n = 4096)



Conclusions

= Up to 2 orders of magnitude speedup

= Super-quadratic space bottleneck



QUBE: a Quick algorithm for
Updating BEtweenness centrality

M. Lee, J. Lee, J. Park, R. Choi, C. Chung

WWW '12: International World Wide Web Conference



Intuition

No need to update all vertices when a new edge is added
Prune vertices whose b does not change
Large reduction in all-pairs shortest paths to be re-computed

Support both edge additions and removals



Minimum Cycle Basis

G = (V, E) undirected graph

Cycle C C E s.t. Vv € V, v incident to even number of edges
in C

Represented as edge incidence vector v € {0, 1}/£l, where
vie)=1 < ecC

Cycle Basis = set of linearly independent cycles

Minimum Cycle Basis = on weighted graph with non-negative
weights we, cycle basis of minimum total weight

w(C) = >, w(C;) where w(C;) = > we



Minimum Cycle Basis Example

= Three cycle basis sets: {C1, G}, { Gy, G}, { G, G}
= If all edges have same weight w, = 1, MCB = {C;, G}

-



Minimum Union Cycle

Given a MCB C and minimum cycles C; € C
Let V(, be the set of vertices induced by C;
Recursively union two V, if they share at least one vertex

The final set of vertices is a Minimum Union Cycle MUC

MUCs are disjoint sets of vertices
MUC(v) = the MUC which contains vertex v



Connection Vertex

Articulation Vertex = vertex v whose deletion makes the
graph disconnected
Biconnected graph = graph with no articulation vertex

Vertex v is an articulation vertex <= v belongs to two
biconnected components

Connection Vertex = vertex v that

= is an articulation vertex
= has an edge to vertex w ¢ MUC(v)



Connection Vertex Example

If (v3,vs) is added,
MUC(V3) = {Vl, Vo, V3, V4}
V1, Vo, V3 are connection
vertices of MUC(v3)

Let G; be the disconnected
subgraph generated by
removing v;

Vg, 1=5

P
Vg ,1=6

S

2
g

N R )

A\

N\

G; WVgi=1



Finding MUCs

Finding an MCB is well studied

Kavitha, Mehlhorn, Michail, Paluch. "“A faster algorithm for
minimum cycle basis of graphs”. ICALP 2004

Finding MUC from MCB relatively straightforward (just union
sets of vertices)

Also find connection vertices for each MUC
All done as a preprocessing step
Need to be updated at runtime



Updating MUCs — Addition

= Adding a does not affect the MUC (endpoints in the same
MUC)

= Adding b creates a new MUC (endpoints do not belong to a
MUC)

= Adding ¢ merges two MUCs (merge MUCs of vertices on the
S between endpoints)



Updating MUCs — Removal

= Removing a destroys the MUC (cycle is removed — no
biconnected component)

= Removing b does not affect the MUC (MUC is still
biconnected)

= Removing c splits the MUC in two (single vertex appears in
all S between endpoints)



Betweenness Centrality Dependency

= Only vertexes inside the MUCs of the updated endpoints need
to be updated

= However, recomputing all centralities for the MUC still
requires new shortest paths to the rest of the graph

= Shortest paths to vertices outside the MUC
= Shortest paths that pass through the MUC

c(v;) 1 0.5
c(vs) 1 0.5
c(vy) | 0.5 0.5
c(vy) | 3.5 0.5
c(vs) 0




Betweenness Centrality outside the MUC

Let s € Vg, t € MUC,
Let j € MUC be a connection vertex to subgraph G;
Each vertex in Sj; is also in Sy

Therefore, betweenness centrality due to vertices outside the
MUC:

bo(1) = {' fve (s

0 otherwise



Betweenness Centrality trough the MUC

= letse VGj, te Vg,

* Let j € MUC be a connection vertex to subgraph G;
= Let k € MUC be a connection vertex to subgraph Gy
= Each vertex in S is also in S

= Therefore, betweenness centrality due to paths through the
MUC:

Ve || Vi
{ el iy s,

0 otherwise

More caveats apply for subgraphs that are disconnected, as every
path that connects vertices in different connected component
passes through v



Updating Betweenness Centrality

b(v) = buuc(v) + > bo(v) + D by(v)

GCG G;,GkCG



QUBE algorithm

Algorithm 3: QUBE(MUCYy)

N0 OUhR Wi

input : MUCy - Minimum Union Cycle that updated
vertices belong to
output : C[v;] - Updated Betweenness Centrality Array
begin
Let SP be the set of all pair shortest paths in MUCYy ;
Let Cfv;] be an empty array, v; € MUCY ;
SP, Clv;] + Betweenness() ;
for each shortest path <vgq,...,vp> in SP do
if vy is a connecting vertex then
G, := Subgraph connected by a connection
‘ vertex vq ;




10
11

12
13

14
15

QUBE algorithm

for eachv; € <vq,...,vp> - {vp} do
Ve, |
Clui] := Cloil + rapr,m 5

if vy is also a connecting vertexr then
Gy := Subgraph connected by a
connection vertex vy, ;
for each v; € <wgq,...,vp > do

VGol1Va, |
| Clvi] = Ofoi] + g e

if G, s disconnected then

| Clva] »= Clval + [Va,|* = XL, (Vg 1)



QUBE + Brandes

QUBE is a pruning rule that reduces the search space for
betweenness recomputation

Can be paired with any existing betweenness algorithm to
compute bpyc

In the experiments, Brandes' is used

Quantities computed by Brandes' (e.g., o) reused by QUBE
for b, and by



400000
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Proportion

Update time as a function of the percentage of vertices of the graph in
the updated MUC for synthetic Erdés-Rényi graphs (n = 5000)



Conclusions

1000000 - — — — / —
%:: 100000 —Z —% / —
§ 10000 7 7é — / 7é -
;’: 1000 *é —é *% —é —
! A A &R R BRI
£ 100 / / / /
7 2| 7 2 /
SRR REREE
! % % Z % % % 7 7
Eva ErdosO2 | Erdos972 Pgp Epa Contact Wikivote | CAGrQc
4 QUBE+Brandes 106 12289 8640 270419 34056 1150801 361362 101895
[ Brandes 256326 486267 297100 | 3538417 | 227158 | 4600805 | 1082843 210831

= Improvement depends highly on structure of the graph

(bi-connectedness)

= From 2 orders of magnitude (best) to 2 times (worst) faster

than Brandes’




Incremental Algorithm for Updating
Betweenness Centrality in
Dynamically Growing Networks

M. Kas, M. Wachs, K. M. Carley, L. R. Carley

ASONAM '13: International Conference on Advances
in Social Networks analysis and Mining



Intuition

Extend an existing dynamic all-pairs shortest path algorithm
to betweenness

G. Ramalingam and T. Reps, “On the Computational
Complexity of Incremental Algorithms,” CS, Univ. of
Wisconsin at Madison, Tech. Report 1991

Relevant quantities: number of shortest paths o, distances d,
predecessors P

Keep a copy of the old quantities while updating
Support only edge addition (on weighted graphs)



Edge update

Compute new shortest paths from updated endpoints (u, v)

If a new shortest path of the same length is found, updated
number of paths as

Ost = Ost + Osy X Oyt

If a new shorter shortest path to any vertex is found, update
d, clear o

Betweenness decreased if new shortest path found
Edge betweenness updates backtrack via DFS over Ps(t)

b(w) =b(w) — sy X Opt/0s



Edge update

Complex bookkeeping: need to consider all affected vertices
which have new alternative shortest paths of equal length (not
covered in the original algorithm)

Amend P during update propagation — concurrent changes
to the SpAG

Need to track now-unreachable vertices separately

After having fixed d, o, b, increase b due to new paths

Update needed Vs, t € V/ affected by changes (tracked from
previous phase)

Betweenness increase analogous to above decrease



Results

Avg
Network D? #(N) [#(E) |Speedup |Affect%
SocioPatterns U (113 4392 1958 x 38.26%
FB-like D 1896 20289 |18.48 x 27.67%
HEP Coauthor |U [7507 [19398 [357.96x |42.08%
P2P Comm. D |6843 (7572 36732 x 0.02%

Speedup over Brandes' on real-world graphs

= Speedup depends on topological characteristics (e.g.,
diameter, clust. coeff.)




Comparison with QUBE

Incremental
Network Type #(Node) | #(Edge) [QuBE | Betweenness
Eva [24] Ownership | 4457 4562 2418.17) 25425.87
CAGrQc [25]|Collaboration| 4158 13422 2.06 67.86

Speedup over Brandes' in comparison with QUBE

= Datasets from the QUBE paper
= About 1 order of magnitude faster than QUBE




Betweenness Centrality — Incremental
and Faster

M. Nasre, M. Pontecorvi, V. Ramachandran

MFCS '14: Mathematical Foundations of Computer Science



Intuition

Keep SDAG for each vertex

Re-use information from SDAG of updated edge endpoints
Adding new edges will not make old edges part of a S
Support only edge addition (on weighted graphs)



Main Result

Let £ = U e C E be the set of edges that are part of any

e€sS
shortest path

the maximum number

Let m* = |E"| and v = max |SpaG,
of edges in shortest pathsvfhrough any single vertex v
n<vt<mt<m

After incremental update, betweenness can be recomputed in

= O(v*n) time using O(r*n) space
= O(m*n) time using O(n?) space

Bounded by O(mn + n?)
Logarithmic factor better than Brandes' (on weighted graphs)



Lemma 1

Lemma 1. If weight of edge (u,v) in G is decreased to obtain G, then for any
x €V, the set of shortest paths from x to u and from v to x is the same in G

and G', and d'(z,u) = d(z,u), d'(v,z) = d(v,z) ; oL\, = Ozu, by = Ovg-

= Edge (u,v) € Sxw A (u,v) € S,x as edge weights are positive



Lemma 2

Lemma 2. Let the weight of edge (u,v) be decreased to w'(u,v), and for any
given pair of vertices s,t, let D(s,t) = d(s,u) + w'(u,v) + d(v,t). Then,
1. Ifd(s,t) < D(s,t), then d'(s,t) = d(s,t) and 0%y = ost.

The shortest paths from s tot in G’ are the same as in G.
If d(s,t) = D(s,t), then d'(s,t) = d(s,t) and ol = st + (Tsu - Tut).
The shortest paths from s to t in G’ are a superset of the shortest paths G.
3. If d(s,t) > D(s,t), then d'(s,t) = D(s,t) and 0l = Osy * Out.

The shortest paths from s to t in G’ are new (shorter distance).

2.

= Updates to o and d in constant time

= Need to update P to complete SDAG update



SDAG Update

Algorithm 3. Update-DAG(s, w'(u,v))

Input: DAG(s), DAG(v), and flag(s,t),Vt € V.

Output: An edge set H after decrease of weight on edge (u,v), and Pi(t),Vt € V—{s}.

: H «+ 0.

: for each v € V do P;(v) = 0.

: for each edge (a,b) € DAG(s) and (a,b) # (u,v) do

if flag(s,b) = UN-changed or flag(s,b) = NUM-changed then
H + HU{(a,b)} and P.(b) « P.(b) U{a}.

: for each edge (a,b) € DAG(v) do
if flag(s,b) = NUM-changed or flag(s,b) = WT-changed then

H + HU{(a,b)} and P.(b) « P.(b) U{a}.

if flag(s,v) = NUM-changed or flag(s,v) = WT-changed then

H «+ HU{(u,v)} and Pi(v) + Pi(v) U{u}.

—_

= UN-changed — dd =0
= NUM-changed — dd =1
= WT-changed — dd > 1



Edge Update

Algorithm 4. Edge-Update(G = (V, E), w'(u, v))

Input: updated edge with w'(u,v), d(s,t) and o, V s,t € V; DAG(s),V s € V.
Output: BC'(v), Vv e V; d'(s,t) and oL, V s,t € V; DAG'(s),V s € V.

1: for every v € V do BC'(v) + 0.

for every s,t € V do compute d'(s,t), 0%, flag(s,t). // use Lemma 2

2: for every s € V do

3 Update-DAG(s, (u,v)). // use Alg. 3

4:  Stack S < vertices in V in a reverse topological order in DAG'(s).

5 Accumulate-dependency (s, S). // use Alg. 2




Space-Efficient Variant O(n?)

Do not store the SDAG
Store only E*
Updated SDAG can be build in O(m™) time
= Time O(m* n)
= Compute E'" from E*, then SpDAG. from E'”
Space O(m* + n?) to store E* and n? distances d(s, t) and
shortest paths o4



Comparison

Paper ||Year‘ Space | Time ‘Weights|Update Type
Brandes static [3]]|2001| O(m + n) O(mn) NO Static Alg.
Lee et al. [21] [[2012] O(n? + m) Heuristic NO Single Edge
Green et al. [12] || 2012 |O(n? + mn) O(mn) NO Single Edge
Kourtellis+ [19] [|2014| O(n?) O(mn) NO Single Edge
Singh et al. [10] || 2013 - Heuristic NO | Vertex update
Brandes static [3][[2001] O(m +n) [O(mn + n%logn)] YES Static Alg.
Kas et al. [16] [[2013]O(n? + mn) Heuristic YES Single Edge
This paper |2014| O(v*-n) O(v* -n) YES |Vertex Update
This paper |2014| O(n?) O(m* - n) YES |Vertex Update




Conclusions

Provably faster than Brandes’ on weighted graphs

However m* can be large in practice

No experiments

Hard to parallelize (need to access pairs of SDAG at a time)

Still has main bottleneck of most algorithms: O(n?) memory



Incremental Algorithms for Closeness
Centrality

A. E. Sariyiice, K. Kaya, E. Saule, U. V. Catalylirek

IEEE BigData '13: International Conference on Big Data



Intuition

Algorithm with pruning based on level difference (similar to
Green et al.)

Additional pruning by bi-connected decomposition (similar to

QUBE)
Applied to closeness centrality (still solves APSP)

Reminder: closeness centrality

1
c(v) = —=——
Z d(u,v)

ueV



Preliminaries

= Best static algorithm O(nm) time

Algorithm 1: CC: Basic centrality computation

Data: G = (V, E)
Output: ccl.]
1 for each s € V do
>SSSP (G, s) with centrality computation
Q + empty queue
d[v] - oo0,Yv € V '\ {s}
Q.push(s), d[s] « 0
far[s] < 0
while Q is not empty do
v 4= Q.pop()
for all w € I'z(v) do
if d[w] = oo then
Q.push(w)
dw] + d[v] + 1
far(s] « far[s] + d[w]
ccls] = =2
return cc|.]

far[s]




Cases

1, dd >1

= Usual cases: dd =0, dd



Pruning - level difference

Algorithm 2: Simple work filtering

Data: G = (V, E), cc[.], uv
Output: cc’[]
G+ (V,EU{uv})
dul.] < SSSP(G, u) > distances from u in G
dv[.] <~ SSSP(G, v) > distances from v in G
for each s € V do
if |du[s] — dv[s]| < 1 then
cc'[s] = ccs]
else
> use the computation in Algorithm 1
with G’
return cc’[.]




Pruning - biconnected components

= |If graph has articulation points
= Change in A can change closeness of any vertex in B

= |t is enough to compute change for u (constant factor is
added for the rest of B)

117/200



Maintaining biconnected decomposition

% G119
(XD (g 3 (@@l

= Assume edge (b, d) added

= Similar to QUBE



SSSP hybridization

BFS can be performed in two ways

Top-down: process vertices at distance d to find vertices at
distance d +1

Bottom-up: after vertices at distance d are found, process all
unprocessed vertices to see if they are neighbors of the frontier

Top-down is better for initial rounds, bottom-up better for
final rounds

Hybridization: use best option at each round



Fraction of cases

L Pr(X=0)
WPr(x=1)
S Pr(X>1)

G0
o0 g
av“al Socéﬁgp

L onS \e e
S \Ne‘O‘GOO% . “0“9_03
we?”

= Probability distribution for level difference dd
= Most edges are easy cases

120/200



Speedup

Time (secs) Speedups Filter

Graph cc CC-B_ CC-BL _ CC-BLI__CC-BLIH | CC-B__ CC-BL _ CC-BLI _ CC-BLIH | time (secs)
Tep-ih 413 0317 0.057 0,053 0.048 75 2438 266 294 0.001
PGPgiantcompo 4960 0431 0.059 0.055 0.045 15 84.1 89.9 11.2 0.001
astro-ph 14.567 9431 0.809 0645 0359 15 18.0 226 40.5 0.004
cond-mat-2005 77.903 39.049 5618 4687 2865 20 13.9 16.6 272 0010
Geometric mean 9.444 2663 0352 0.306 0217 33 263 30.7 35 0.003
Soc-sign-epinions T78.870 257410 20.603 19.935 6254 30 3738 39.1 1245 0.041
loc-gowalla 2267.187 | 1270820 132955 135015 53.182 18 17.1 16.8 426 0.063
web-NotreDame 2,845.367 579.821 118.861 83.817 53.059 49 29 339 536 0050
amazon0601 14,903.080 | 11953680  540.092  551.867 298.095 12 276 27.0 50.0 0.158
web-Google 65.306.600 460 2457.660  1,701.249 824.417 3.0 266 384 792 0267
wiki-Talk 175450.720 | 25701710  2,513.041  2,123.096 922.828 6.8 69.8 82.6 190.1 0491
DBLP-coauthor | 115919.518 | 18,501.147 288269  251.557 252.647 62 402.1 460.8 458.8 0530
Geometric mean 13884.152 | 4218031 315777 ___273.036 139.170 32 39 50.8 99.7 0.146

= Speedup of 2 orders of magnitude

= Mostly due to level pruning

= Biconnected decomposition and hybridization also give good
speedups




Scalable Online Betweenness Centrality in Evolving
Graphs

Scalable Online Betweenness
Centrality in Evolving Graphs

N. Kourtellis, G. De-Francisci-Morales, F. Bonchi

TKDE: IEEE Transactions on Knowledge and Data
Engineering (2015)



Intuition

Incremental, exact, space-efficient, out-of-core, parallel version
of Brandes'

Handles edge addition and removal
Vertex and edge betweenness

Scalable to graphs with millions of vertices



Algorithm

= Run a modified Brandes' on the initial graph
= Keep track of d, o, § in a SDAG (no P)
= On edge update, adjust the SDAG and update b

Input: Graph G(V, E) and edge update stream Eg
Output: VBC'[V'] and EBC'[E’] for updated G'(V', E')
Step 1: Execute Brandes’ alg. on G to create & store data
structures for incremental betweenness.
Step 2: For each update ecEs, execute Algorithm 1.
Step 2.1 Update vertex and edge betweenness.
Step 2.2 Update data structures in memory or disk
for next edge addition or removal.




Data structure

= SDAG; for each source s € V

= SDAG contains d, o, § for each other vertex t € V

= No predecessors P, re-scan neighbors and use d to find them

Save memory - space complexity O(n?)

Fixed size data structure - efficient out-of-core management
Same time complexity O(nm) - in practice, makes the
algorithm faster



Pivot

= When adding or removing an edge, consider dd = |ds, — ds, |

= Three cases: dd =0, dd =1, dd > 1 (analogous to Green et
al.)

= Last case dd > 1 hardest - structural changes in SDAG

= Find pivots to discover structural changes

Definition (Pivot)

Let s be the current source, let d and d’ be the distance before
and after an update, respectively, we define pivot a vertex
pld(s,p)=d'(s,p) NIw €T (p): d(s,w)#d (s, w).

= Pivots’ distance unchanged — use as starting points to
correct distances



Finding pivots

Addition - pivots in sub-dag rooted in u; = v
vertices moved closer must be reachable from wu;
Can be found during exploration while fixing o

Removal - pivots may be anywhere

Need one exploration to find them

Need separate exploration from found pivots to correct
distances




Structural changes

Before After Addition After Deletion
case1 |(a) ” (b) (c) (d) (e) ()

@Il L DR

Consider x € ['(y), x can either be a sibling or a predecessor
of y

Each case requires slightly different combination of corrections
for d, o, §

v is pivot in 1d, 2e, 2f

Removal for case 1d can be optimized (pivot y is sibling of x)



Scalability

= Qut-of-core - stream SDAG from disk

= In-place update on disk to minimize writes
= Columnar storage for d, o, §

= Read only d, skip rest if dd =0
= Parallelization - coarse grained over s

= Implementation in MapReduce
= Amenable to Apache Storm/Flink/Spark



CDF

1k-MP
1k-DO
1k-MO

we-MP
we-DO
we-MO wrewnn

0.8
0.6
0.4
0.2

PRPRTT LU

10 100
Speedup Speedup

Speedup over Brandes' on synthetic and real graphs (n = 10k)

= In-memory (M-) version faster than out-of-core (D-)

= Without predecessor (-O) always faster than with predecessors

(-P)



CDF

1 10 100 1 10 100
(a)Speedup(additions,synthetic) (b)Speedup(removals,synthetic)

1 10 100 1 10 100

(c)Speedup(additions,real) (d)Speedup(removals,real)

Speedup over Brandes' for out-of-core version on synthetic and real
graphs (n = 1M)

= Qut-of-core version scales up to 1M vertices
= Speedup up to 2 orders of magnitude



Conclusions

Fully dynamic (addition and removal)
Algorithm can scale to graphs with realistic size
Ideal horizontal scalability

O(n?) space bottleneck



Approximation Algorithms



Why should we look for an approximation?

Static graphs

= many interesting networks are web-scale;

= computing the exact centralities can be extremely expensive;

= is there a real reason (i.e., application) to require the exact
values?

Dynamic graphs

= exact centralities change at all times;

= not worth chasing for highly volatile quantities;

In both cases, high quality approximations are sufficient in practice



What kind of approximation

: vertex with exact centrality c(v)
(v): value that “approximates” c(v)

Definition (Absolute error)

erruns(v) = |c(v) — &(v)|

%
c

Definition (Relative error)
errrel(v) = |e(v) — &(v)l/e(v)

Definition ( -approximation)

» Lete€(0,1) and § € (0,1);

= a (e, d)-approximation is a set {¢(v),v € V} of n values, such
that
Pr(3v € V s.t. err(v) > ¢) < 4;

= it offers uniform probabilistic guarantees over all the nodes;

= it assumes normalized versions of centrality (i.e., in [0, 1]).



Sampling

Many of the algorithms we present are sampling-based.

General Sampling Based Algorithm

@ Select independently at random (not all uniformly) a small set
of objects (e.g., single vertices, pair of vertices, shortest
paths);

@® Perform some computation using these objects (e.g., SSSP
from vertex);

© Use the results of the computation to estimate the centrality
of all nodes;



Sampling

Why sampling?

By only select a small subset of the “objects” (instead of the whole
set), computing the approximation is faster than computing the
exact values

Questions for sampling algorithms

= What “objects” to sample?

= How to sample?
If sampling procedure is slow, then the advantages are lost;
= How many objects to sample in order to guarantee an
(e, 6)-approximation?



Outline

= Approximation algorithms for static graphs

= A sampling-based algorithm for closeness
= A sampling+pivoting algorithm for closeness
= Two sampling-based algorithms for betweenness

= Approximation algorithms for dynamic graphs
= Two sampling-based algorithms for betweenness



Approximation Algorithms for Static Graphs



Fast approximation of centrality
D. Eppstein, J. Wang

Journal of Graph Algorithms and Applications (2004)



Idea

Interested in approximating closeness:
n—1
Zy;ﬁx d(X7 y)

(inverse of the average distance)

c(x) =

Fastest-known exact algorithm: APSP
l.e., run Dijkstra's algorithm from each vertex v

Idea: only run Dijkstra from a few sources!

Warning

The algorithm actually computes an approximation for the inverse

of closeness:
Cil(V) _ Zy;éx d(u) V)
n—1

(effectively the average distance)



Algorithm
|

= Let k be the number of sources to obtain the desired
approximation;
= Fori=1,..., k:
= pick a vertex u; uniformly at random
= run Dijkstra from u;

= Let .
1) — T >oiza d(uis vi)
& i) n—1 k

E [c:vl(v)} — cI(v).

Question

How large should k be to get a good approximation of ¢~ 1?



How much to sample

Lemma
Let A be the diameter of the graph and let ,6 € (0,1). If

2 1
k282<|n2+|nn+|n6>

Then, with probability at least 1 — §

’c*l(v) — c_l(v)‘ < Aeg, forallveV

Proof

@ Hoeffding inequality to bound the error of a single vertex;

® Union bound to get uniform guarantees.

Running time: O ('Og”gﬁ(n log n + m))



Computing Classic Closeness
Centrality, at Scale

E. Cohen, D. Delling, T. Pajor, R. F. Werneck

COSN '14: ACM Conference on Social Networks (2014)



Issues with sampling

Assume that the distance distribution from a vertex v has a
heavy tail, then the average distance

Cfl(v) _ Zu;ﬁv d(u‘/ V)
n—1
is dominated by few distant vertices;

it is unlikely that these vertices are among the k that are
sampled

Hence the sample average

igy) = i dlunw)

is a poor estimator of the average distance c (V).

Sampling along can't give us small relative error



Pivoting

Pivot The pivot p(v) of a vertex v is the sampled vertex which is
closest to v (p(v) € S).

= We have the exact value of ¢ 1(p(v)), can we leverage it?

= The average SP distance ¢ *(v) of v is “close” to ¢ *(p(v)):

¢ Hp(v)) = d(v,p(v)) < ¢ H(v) < ¢ H(p(v)) — d(v,p(v))
= One can actually prove that, with high probability,
X (p(v)) + d(v. p(v)) < 3¢ (v) + O(1)

Pivoting by itself is not satisfactory: the relative error is still
somewhat large.

Idea: combine sampling and pivoting into a hybrid estimator



Hybrid Estimator

For each vertex v with pivot p(v), split the set V' \ S into three

sets:
= L(v): vertices in V' \ S at distance at most d(v, p(v)) from

p(v);

= HC(v): vertices in S with distance greater than d(v, p(v))
from p(v).

= H(v): vertices in V' \ S at distance greater than d(v, p(v))
from p(v).

The hybrid estimator is

I(v) = ! (Z d(p(v),u)+ > d(u,v)

€H(v) ueHC(v)

uel(v)

|L(v)| oy
HITOLRE std(’ ))

We have E[c—1(v)] # ¢ 1(v).



Guarantees

= With k = 1/23, the hybrid estimator has normalized RMSE
O(e).

= With k = ==3In n, the maximum relative error is O(c) w.h.p.




Experiments

Exact Sampling Pivoting Hyb.-0.1 Hyb.-ad

4l |E| time err. time err. time err. time err. time

type instance [-10%] [10%] ~hm] (%] [sec]  [%]  [sec] [%] [sec]  [%] [sec]
road fla-t 1070 1344 59:30 5.4 24.4 3.2 21.6 2.5 283 28 73.2
usa-t 23947 28854  44222:06 2.9 849.4 3.7 7364 20 23443 2.6 99379

grid grid20 1049 2095 70:34 4.3 26.5 3.5 26.8 2.9 29.2 3.3 69.7
triang  buddha 544 1631 19:07 3.6 14.5 3.3 13.6 24 159 3.2 30.7
buddha-w 544 1631 21:25 3.5 16.4 2.6 155 2.2 185 29 38.1

del20-w 1049 3146 72:06 2.7 27.4 3.6 26.7 2.6 326 2.7 71.0

del20 1049 3146 67:54 4.1 25.6 5.3 252 3.7 270 3.6 54.7

game FrozenSea 753 2882 38:25 3.0 22.1 4.1 202 21 240 34 49.3

The hybrid estimator is better than just-sampling and just-pivoting.



Summary for closeness

= Sampling can help, but not alone

= Pivoting alone is not good

= The hybrid approach is promising, but the sample size results
are somewhat disappointing (very large sample sizes!)

More work to do!



Centrality Estimation in Large
Networks

U. Brandes, C. Pich

International Journal of Bifurcation and Chaos (2007)



Betweenness centrality

We consider a normalized version:

o) =+ 3 W o

g
s, t#v st

= os: number of SPs from s to t

= 0g(v): number of SPs from s to t going through v
Exact algorithm: Brandes' Algorithm

@ Run Dijkstra's algorithm from each source vertex s

® After each run, perform aggregation by walking SP DAG
backwards

Idea: run Dijkstra only from a few sources (as in EW’'01)



How can one get an (g, §)-approximation?

k + E% (Inn+ In2+1In %) // sample size

b(v) « 0, forall ve V

for i< 1,... kdo // Brandes’ algo iterates over V
vj <— random vertex from V/, chosen uniformly
Perform single-source SP computation from v;
Perform partial aggregation, updating B(u) ueV, like in
exact algorithm

end

Output {b(v),v e V}

Theorem

The output is a (e, d)-approximation:

Pr(3ve Vst |b(v) —bv|>e) <6



How do they prove it?

Start with bounding the deviation for a single vertex v (Hoeffding
inequality):

2

Pr(‘B(V) —b(v)] >¢) < 0o 2ke

Then take the union bound over n vertices to ensure uniform
convergence

The sample size kK must be such that

2e—2k€2 S

S|

That is, to get an (£, )-approximation, we need

1 1
k>2€2<|nn+|n2+|n5>



Better Approximation of Betweenness
Centrality

R. Geisberger, P. Sanders, D. Schultes

ALENEX (2008)



Issues with standard estimator

The standard estimator
k
1
=7 Z

produces large overestimates for unimportant vertices close to a
sampled vertex

Example

= Let v be a degree-two vertex connecting a degree-one vertex
u to the rest of the network;

= If u is sampled, then b(v) overestimates b(v) by a factor of
n/k

Possible solution: stop vertices from “profiting” for being near a
sampled vertex.



A new sampling scheme

Idea: sample pairs (s, d) of vertex and direction (‘forward” or
“backward")
= When sampling (s, forward)
= run Dijkstra from s
= When sampling (t, backward)
= virtually flip direction of edges (if directed graph);
= run Dijkstra from s

We need to adapt the estimator b(v).



New estimator
For a vertex v, define

out(v) d(u,v .
Ztev,t;ﬁu,v (751» ) d((v,t) if d =

DotV ttuy Uf;ftv) (1 - Z((L‘i’:))) if d = backward

forward

~

gv(u, d) -

The new estimator for b(v) is

The factor 2 corrects for the reduced sampling probabilities (1/2n)

>\M

Theorem
If ) )
k > 522 <In2+|nn+|n5)>,

then the output is a (e, 0)-approximation:

Pr(3ve Vst |b(v)—bv|>e) <4



Experiments
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Fast Approximation of Betweenness
Centrality through Sampling

M. Riondato, E. M. Kornaropoulos

DMKD: Data Mining and Knowledge Discovery (2015)



What is wrong with this sampling approach?

1) The algorithm needs

1 1
k2282<lnn+|n2+|n6>

= This is loose due to the union bound, and does not scale well
(experiments)

= The sample size depends on In n. This is not the right
quantity: not all graphs of n nodes are equally “difficult”:
e.g., the n-star is “easier” than a random graph

The sample size k should depend on a more specific characteristic
quantity of the graph

2) At each iteration, the algorithm performs a SSSP computation
Full exploration of the graph, no locality



How can we improve the sample size?

[R. and Kornaropoulos, 2015] present an algorithm that:

1) uses a sample size which depends on the vertex-diameter, a
characteristic quantity of the graph.
The derivation uses the VC-dimension of the problem;

2) samples SPs according to a specific, non-uniform distribution
over the set S of all SPs in the graph. For each sample, it
performs a single s — t SP computation

= More locality: fewer edges touched than single-source SP

= Can use bidirectional search / A*, ...



What is the algorithm?

VD(G) < vertex-diameter of G // stay tuned!

k < 55 ([logy(VD(G) — 2|) + 1 +1n(1/0)) // sample size
b(v) « 0, forall ve V

fori< 1.... kdo

(u, v) < random pair of different vertices, chosen uniformly

Sy < all SPs from v to v // Dijkstra, trunc. BFS,

p < random element of S, chosen uniformly // not
uniform over Sg

b(w) « b(w) 4+ 1/k, for all w € Int(p) // update only
nodes along p

end
Output {b(v),v € V}

Theorem

The output {b(v),v € V'} is an (<, d )-approximation.



VC-dimension

= The Vapnik-Chervonkenkis (VC) dimension is a combinatorial
quantity that allows to study the sample complexity of a
learning problem;

= |t allows to obtain uniform guarantees on sample-based
approximations of expectations of all functions in a family F;

= Not easy to compute exactly, somewhat easier to give upper
bounds;



Theorem (VC -sample)

= Let F be a family of functions from a domain D into {0,1};
= Let d be an upper bound to the VC-dimension of F;

= Lete€(0,1) and § € (0,1)

= Let S be a random sample of D of size

1 1

obtained by sampling D according to a prob. distribution 7

= Then
>s> <90 .

In other words: if we sample proportionally to the VC-dimension,
we can approximate all expectations with their sample averages.

Pr <3f € F sit. ‘]Sl\ > f(s) — Ex[f]

seS




How can we prove the correctness?

We want to prove that the output {b(v),v € V} is an
(e, 0)-approximation

Roadmap:

@ Define betweenness centrality computation as a expectation
estimation problem (domain D, family F, distribution 7)

® Show that the algorithm efficiently samples according to 7

©® Show how to efficiently compute an upper bound to the
VC-dimension
Bonus: show tightness of bound

O Apply the VC-dimension sampling theorem



How do we bound the VC-dimension?

Definition (Vertex-diameter)
The vertex-diameter VD(G) of G is the maximum number of

vertices in a SP of G:

VD(G) = max{|pl. p € Sc} -

If G is unweighted, VD(G) = A(G) + 1. Otherwise no relationship
Very small in social networks, even huge ones (shrinking diameter
effect)

Computing VD(G): (2 rrT;?r): eeéjg: VV\Y:iiSEE)—approximation via

single-source SP

The VC-dimension of (Sg, F) is at most |log, VD(G) — 2| + 1




Is the bound to the VC-dimension tight?

Yes! There is a class of graphs with VC-dimension exactly
|log, VD(G) — 2] +1
The Concertina Graph Class (G;);en:

*——0

G, ",
G, G

Yy Uy U

&
AN

Theorem
The VC-dimension of (Sg,, F) is [logo, VD(G) — 2| +1=



How well does the algorithm perform in practice?

It performs very well!

We tested the algorithm on real graphs (SNAP) and on artificial
Barabasi-Albert graphs, to evalue its accuracy, speed, and
scalability

Results: It blows away the exact algorithm and the
union-bound-based sampling algorithm



How accurate is the algorithm?

In O(10%) runs of the algorithm on different graphs and with
different parameters, we always had |b(v) — b(v)| <  for all nodes
Actually, on average |b(v) — b(v)| < /8

Absolute estimation error
-
o

email-Enron-u,|V|=36,692,|E|=367,662,6=0.1,runs= 5

° ° . |
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°
°
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v v . - n n

® Avg (diam-2approx)
b Vv Avg+Stddev (diam-2approx
©® Max (diam-2approx)

0.01 002 003 004 005 006 0.07 0.08 0.09 0.1 0.1
epsilon



How fast is the algorithm?

Approximately 8 times faster than the simple sampling algorithm

Variable speedup w.r.t. exact algorithm (200x — 4x), depending on

I

email-Enron-u, |V|=36,692, |[E|=367,662,5= 0.1, runs=5
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L L
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How scalable is the algorithm?

Much more scalable than the simple sampling algorithm, because
the sample size does not depend on n

Undirected Random Barabasi-Albert Graphs, €=0.02, 6=0.1, runs=5
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ABRA: Approximating Betweennes
Centrality in Static and Dynamic
Graphs with Rademacher Averages

M. Riondato, E. Upfal

arXiv (2016)



Issues with RK approach

= For each s — t SP computation, we only use a single SP
= a lot of wasted work!
= Must compute (upper bound to) the vertex-diameter before
we can start sampling
= Exact computation cannot be done (would be equivalent to

obtain exact betweenness)
= Approximate computation leads to larger-than-necessary

sample size



How to solve these issues

= Design a sample scheme that uses all SPs between a sampled
pair of vertices

= Use progressive sampling, rather than static sampling
= Start from small sample size
= Check stopping condition to verify whether we sampled enough
to get a (g, 0)-approximation
= If yes, stop, otherwise keep sampling.

How to achieve this: using Rademacher averages (VC-dimension
on steroids)



Key ideas

= When backtracking from t to s, follow all SPs, not just one of
them, and increase the estimation of all vertices found along
the way: no wasted work;

= The stopping condition depends on:

= the richness of the vectors representing the current estimates
of the betweenness of all vertices

= the current sample size

= Formulas like this:

1

1 o o In 2 /In2/8
T gh 2 exp(slIvI*/ (2t ))+2€a’(1 —a)+ 20

veVs

= But it works!



Experiments

Speedup Runtime
w.r.t. Breakdown (%) Absolute Error (x10°)
Reduction
Runtime Stop Sample Wt
Graph B (sec.) BA RK  Sampling Cond. Other Size RK max  avg
o 0.005 483.06  1.36 290  99.983  0.014  0.002 110,705 2.64 70.84  0.35
Soc-Epinionsl (010 124.60 528 3.31  99.956  0.035 0.000 28,601 2.55 120.60  0.69
Directed 0.015 57.16  11.50 4.04  99.927  0.054  0.018 2.47 198.90  0.97
V| =75,879  0.020 3290 19.98 5.07  99.895  0.074  0.031 2.40 303.86 1.22
|E| = 508,837 0.025 21.88  30.05 6.27  99.862  0.092  0.046 2.32 223.63 141
0.030 16.05 40.95 7.52  99.827  0.111  0.062 2.21 38224 1.58
0.005 100.06  1.78 4.27  99.949  0.041  0.010 0.58
P2p-Gnutellal  g.010 26.05  6.85 4.13  99.861 0.103  0.036 1.15
Directed 0.015 1191 1498 4.03  99.772  0.154  0.074 1.63
|V| =62,58  0.020 711 2509 3.87  99.688  0.191  0.121 2.15
|E| = 147,892 0.025 484 36.85 3.62  99.607  0.220 0.174 2.52
0.030 341  52.38  3.66  99.495  0.262  0.243 2.86
Email-Enron  0-010 20243  1.18 1.10  99.984  0.013  0.003 1.09 14551 048  2.46
Undireotod 0.015 91.36  2.63 1.09  99.970  0.024  0.006 1.07 253.06  0.71  3.62
|V|=36,682 0020 53.50  4.48 1.05  99.955  0.035  0.010 1.03 290.30  0.93  4.83
1] = 185,831 0028 31.99  7.50 111 0.052  0.016 1.10 548.22 121  6.48
ol =183, 0.030 2406  9.97 1.03 0.061  0.021 1.02 477.32 138 7.34
Cit-HepPh 0.010 215.98 236 221 0.030  0.004 32,469 2.25 12008  1.72  3.40
Undirected 0.015 9827 519 216 0.054  0.008 14,747 2.20 226.18 249 5.00
V| =31,516 0020 58.38 874 2.05 0.073  0.013 8,760 2.08 246.14 3.7 6.39
. 0.025 37.79 1350  2.02 0.001  0.018 5,672 2.06 289.21  3.80  7.97
|E| = 421,578 030 2713 18.80 1.95 0.108  0.023 4,076 1.99 359.45 4.45  9.53

= Smaller sample sizes than RK

= Much faster (not just because using smaller sample, also
because no need to compute the vertex-diameter)
= Very accurate



Experiments

1E-02 - max
avg+3stddev
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o
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3 1E-04
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© o —e

1E-05 /’/o——’: o

1E-06

0 0.005 0.01 0.015 0.02 0.025 0.03

epsilon

= More than 10x more accurate than guaranteed, on average;

= More than 100x more accurate than guaranteed, in the best
case;

= Close to the guarantee in the worst case: this is good.



Approximation Algorithms for Dynamic Graphs



Fully-Dynamic Approximation of
Betweenness Centrality

E. Bergamini, H. Meyerhenke

ESA: European Symposium on Algorithms (2015)



Key ideas

This algorithm builds on:
= the RK sampling-based approximation algorithm;

= existing algorithms to update the SP DAG after an
insertion /removal of a batch of edges;

It keeps track of potential modifications to the vertex diameter to
understand whether to increase the sample size;

Theorem

After each batch update, the output is an (£, 0)-approximation.



Updating the DAGs

Never change the set of sampled pairs of vertices, unless a
sample was removed or more samples are needed

What can change is which SP is sampled: if an edge is added,
the path we sampled before may no longer be a SP.

In any case, must save all the SP DAGs between the sampled
pair of nodes

Requires a lot of memory, but is needed in order to be able to
update the estimation after the batch update

The update computation builds on existing algorithms



Keeping track of the vertex diameter

= An edge is removed: the VD may decrease, but no need to
change the sample size;

= An edge is added between two existing vertices in the same
connected component: no change in the VD, hence no change
in sample size

= An edge is added between two existing vertices in two
different connected components: the VD may have changed,
recomputation is necessary

= An edge is added between an existing vertex and a new
vertex: the VD may have increased by one, recomputation is
necessary (the model used in this paper does not actually
consider the insertion and removal of vertices)

Relying on the vertex diameter is not a great idea, that's why we
developed ABRA, the Rademacher Averages-based algorithm.



Experiments
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Fully Dynamic Betweenness
Centrality Maintenance on Massive
Networks

T. Hayashi, T. Akiba, Y. Yoshida

VLDB: Very Large Databases (2016)



Key ideas

Still a sampling-based approximation algorithm, but samples
pair of vertices;

This similar to RU16, but analysis use the union bound, so
O(£2log n) samples, which is a lot;

Presents a new data structure called hypergraph sketch to
keep track of the SP DAGS.

An additional data structure, called the Two-ball Index, allows
to identify the parts of hypergraph sketches that require
updates



The Hypergraph Sketch

(effectively a hypergraph)

= For each sampled pair (s, t) of vertices, an hyperedge is added
to the hypergraph:

est = {(v,0s,0v,¢) : visonaSP from s to t}

= The estimations b(v) can be obtained from the sketch;

= Handling insertion and removal of edges is straightforward,
but must be done efficiently

= Handling insertion and removal of nodes requires to change

the set of sampled pair of vertices, i.e., to potentially remove
a hyperedge and insert another one;



Vertex Operations

Algorithm 1 Vertex operations

1: procedure ADDVERTEX(H, v)

2 Let G, be obtained from Gr_; by adding v.

3 for each es; € E(H) do

4 continue with probability |V,-_1]2/|V-|.

5 Sample (s',t') € (V7 x V7)) \ (Vo—1 X Vo_1).

6: Replace es; by the hyperedge e,/ made from (s’,t').
7: procedure REMOVEVERTEX(H, v)

8 Let G+ be obtained from G,_; by deleting v.

9 for each es: € E(H) do

10: if s # v and t # v then continue.

11: Sample (s',t") € V+ X V; uniformly at random.
12: Replace eg; by the hyperedge e ;s made from (s',t').




The Two-Ball Index

= For each sampled pair (s, t), maintain a triplet (A, 37, 57),
where
= Ay ={d(s,v),v ison aSP from s to t}
= The ball 5T is the set of vertices at distance less than some d.
from s, with their distances
= The ball 57 is the set of vertices at distance less than some d;
from t, with their distances

= The radiuses of the balls are such that they do not touch and
are small.

= The triplets can be built with a bidirectional SP computation
from s to t



Update Mechanism (for insertion)

Algorithm 2 Update g(s,ds) after edge (u,v) is inserted

procedure INSERTEDGEINTOBALL(u, v, ?s)
Q < An empty FIFO queue.

if 5 s[v] > 5 s[u] +1 then
s[v] + ?S[u] + 1; Q.push(v).
while not Q.empty() do
v < Q.pop().
if 5 s[v] = ds then continue.
for each (v,c) € E do

if B.lc] > Bsv] +1 then
sle] + ?S[v] + 1; Q.push(c).

—_
e

(much more complex for deletion)



Experiments
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Summary on approximation algorithms for
betweenness

Sampling Rules Everything Around Me;

Work on pushing down the amount of needed sampling is
important;

Progressive sampling frees us from many worries, but it is
challenging;

Fast and memory efficient data structures are needed to be
able to update the estimations fast in dynamic graphs, where
approximation is most useful;

Developing hybrid estimators?



Conclusions




What we presented

= Brief survey of the most common measures of centrality
= Axioms for centrality

= Focusing on closeness and betweenness centrality:

= exact algorithms on static graphs (GPU-based)

= exact algorithms on dynamic graphs (streaming, distributed)
= approximation algorithms for static graphs

= approximation algorithms for dynamic graphs

In each of the above, there are important open questions and
directions for future work.



Big Graphs

“Big Data” is a lot of hype and refers to very different things
depending on the context.

However, the unprecedented volume, velocity, and variety
pose real algorithmic challenges, especially when dealing with
expressive and complex representations such as graphs.

Challenges are opportunities for researchers!

Big graphs require new algorithms



Volume requires new algorithms

Classic computational complexity:
= [s there a polynomial time exact algorithm —7 Go for it!
= Your problem is NP-Hard — better think about approximation
algorithms. . .
Classic computational complexity: polynomial = feasible
But is polynomial time really feasible?
= E.g., Brandes algorithm not feasible for n = 10°
On big graphs quadratic time is as bad as NP-Hard
= New, finer-grain, complexity theory needed (?)
Need for massively parallel algorithms, out-of-core algorithms,
sublinear algorithms, approximated algorithms, randomized
algorithms, etc.



Velocity requires new algorithms

The velocity with which new data keeps arriving. ..

... and the velocity with which the information of interest
keeps changing.

In the case of graphs new edges are formed and old edges
might disappear at very high speed.

= How to maintain the centrality score of all vertices
continuously updated?

Velocity requires streaming algorithms that only read each
data point once (or a few time), specialized small-space data
structures (sketches) that maintain basic statistics and can be
updated on-the-fly, algorithms which are robust to changes in
the data, etc.



Variety requires new algorithms

= Variety refers to the richness of different information types to
be mixed in the analysis.
= Examples in graphs:

Vertices have attributes;

Vertices are spatio-temporally localized and keeps moving;
Edges have types (colors);

Edges have multiple types (a.k.a. multigraphs, multiplex
networks, multidimensional networks, etc.);

Each edge has associated a time series representing the amount
of communication (or activity) along the edge per time unit;

Semantic richness in the data implies complexity in the

knowledge we can extract.

Applications involving “multi-structured” data require the

definition of new, ad-hoc, model and patterns ...

... and of course, the algorithms to extract them,
and these new algorithms need to be able to deal with the

volume and the velocity!



Big Graphs

= The computational complexity of most existing graph
algorithms makes them impractical in today's networks, which
are:

= massive,

= information-rich, and

= dynamic.

= In order to scale graph analysis to real-world applications and

to keep up with their highly dynamic nature, we need to
devise new approaches specifically tailored for modern parallel
stream processing engines that run on clusters of
shared-nothing commodity hardware.



Thank you!
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