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Introduction
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Social network analysis

• Social network analysis is the study of social entities and their
interactions and relationships

• The interactions and relationships can be represented with a
network or graph,

• each vertex represents an actor
• each link represents a relationship

• From the graph, we can study the properties of its structure,
and the role, position, and prestige of each social entity.

• We can also find various kinds of sub-graphs, e.g.,
communities formed by groups of actors.
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Centrality in networks

• Important or prominent actors are those that are extensively
linked or involved with other actors

• A person with extensive contacts (links) or communications
with many other people in the organization is considered more
important than a person with relatively fewer contacts

• A central actor is one involved in many ties
• Graph centrality is a topic of uttermost importance in social

sciences
• Also related to the problem of ranking in the context of Web

Search:
• Each webpage is a social actor
• Each hyperlink is an endorsement relationship
• Centrality measures provide a query independent link-based

score of importance of a web page
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History of centrality (in a nutshell)

• first attempts in the late 1940s at MIT (Bavelas 1946), in the
framework of communication patterns and group
collaboration;

• in the following decades, various measures of centralities were
proposed and employed by social scientists in a myriad of
contexts (Bavelas 1951; Katz 1953; Shaw 1954; Beauchamp
1965; Mackenzie 1966; Burgess 1969; Anthonisse 1971;
Czapiel 1974...) item a new interest raised in the mid-90s
with the advent of search engines: a “reincarnation” of
centrality.

Freeman, 1979

“several measures are often only vaguely related to
the intuitive ideas they purport to index, and many are so
complex that it is difficult or impossible to discover what,
if anything, they are measuring.”
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Types of centralities

Starting point: the central vertex of a star is the most important!
Why?

1 the vertex with largest degree;
2 the vertex that is closest to the other vertexes (e.g., that has

the smallest average distance to other vertexes);
3 the vertex through which all shortest paths pass;
4 the vertex with the largest number of incoming paths of

length k, for every k;
5 the vertex that maximizes the dominant eigenvector of the

graph adjacency matrix;
6 the vertex with highest probability in the stationary

distribution of the natural random walk on the graph.
These observations lead to corresponding competing views of
centrality.
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Types of centralities

This observation leads to the following classes of indices of
centrality:

1 measures based on distances [degree, closeness, Lin’s index];
2 measures based on paths [betweenness, Katz’s index];
3 spectral measures [dominant eigenvector, Seeley’s index,

PageRank, HITS, SALSA].

The last two classes are largely the same (even if that wasn’t fully
understood for a long time.)
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Geometric centralities

• degree (folklore): cdeg(x) = d−(x)
• closeness (Bavelas, 1950): cclos(x) = c(x) = 1∑

y d(y ,x)

• Lin (Lin, 1976): cLin(x) = r(x)2∑
y d(y ,x) where r(x) is the number

of vertexes that are co-reachable from x
• harmonic (Boldi and Vigna, 2013) charm(x) =

∑
y 6=x

1
d(y ,x)
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Path-based centralities

• betweenness (Anthonisse, 1971):
cbet(x) = b(x) =

∑
y ,z 6=x ,σyz 6=0

σyz (x)
σyz

where σyz is the number
of shortest paths y → z , and σyz(x) is the number of such
paths passing through x

• Katz (Katz, 1951): cKatz(x) =
∑

t≥0 β
tpt(x) where pt(x) is

the number of paths of length t ending in x , and β is a
parameter (β < 1/ρ)
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Spectral centralities

• dominant (Wei, 1953): cdom(x) is the dominant (right)
eigenvector of G

• Seeley (Seeley, 1949): cSeeley(x) is the dominant (left)
eigenvector of Gr

• PageRank (Brin, Page et al., 1999): cPR(x) is the dominant
(left) eigenvector of αGr + (1− α)1T 1/n (where α < 1)

• HITS (Kleinberg, 1997): cHITS(x) is the dominant (left)
eigenvector of GTG

• SALSA (Lempel, Moran, 2001): cSALSA(x) is the dominant
(left) eigenvector of GT

c Gr

Where G denotes the adjacency matrix of the graph, Gr is the adjacency
matrix normalized by row, and Gc is the adjacency matrix normalized by
column.
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Closeness and Betweenness
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Closeness centrality
Motivation
It measures the ability to quickly access or pass information
through the graph;

Definition (Closeness Centrality)

• closeness centrality c(x) of a vertex x

c(x) = 1∑
y 6=x∈V d(y , x).

• d(y , x) is the length of a shortest path between y and x .
• The closeness of a vertex is defined as the inverse of the sum

of the Shortest Path (SP) distances between the vertex and
all other vertexes of the graph.

• When multiplied by n − 1, it is effectively the inverse of the
average SP distance.



16/200

Betweenness centrality
Motivation
It measures the frequency with which a user appears in a shortest
path between two other users.

Definition (Betweennes centrality)

• betweenness centrality b(x)
of a vertex x :

b(x) =
∑

s 6=x 6=t∈V
s 6=t

σst(x)
σst

• σst : number of SPs from s
to t

• σst(x): how many of them
pass through x

Example retrieved from Wikipedia
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Betweenness centrality
• Can be defined also for edges (similarly to vertexes)
• Edges with high betweenness are known as “weak ties”
• They tend to act as bridges between two communities

The strength of weak ties
(Granovetter 1973)

• Dissemination and coordination
dynamics are influenced by links
established to vertexes of
different communities.

• The importance of these links
has become more and more with
the rise of social networks and
professional networking
platforms.
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Weak ties

Bakshy et al. 2012
Weak links have a greater potential to expose links to new
contacts that otherwise would not have been discovered.
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Weak ties

Grabowicz et al. 2012

• Personal interactions are more likely to occur in internal links
within communities (strong links)

• Events or new information is propagated faster by
intermediate links (weak links).
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Girvan-Newman algorithm for community detection
(Girvan and Newman 2002)

Hierarchical divisive clustering by recursively removing the
“weakest tie”:

1 Compute edge betweenness centrality of all edges;
2 Remove the edge with the highest betweenness centrality;
3 Repeat from 1.
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Comparison

Which vertex is the most central?

• for Degree Centrality:
• for Closeness Centrality:
• for Betweenness Centrality:
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Comparison

Which vertex is the most central?

• for Degree Centrality: user A
• for Closeness Centrality:
• for Betweenness Centrality:
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Comparison

Which vertex is the most central?

• for Degree Centrality: user A
• for Closeness Centrality: users B and C
• for Betweenness Centrality:
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Comparison

Which vertex is the most central?

• for Degree Centrality: user A
• for Closeness Centrality: users B and C
• for Betweenness Centrality: user D
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Visual Comparison

A Degree Centrality
B Closeness Centrality
C Betweenness Centrality
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Axioms for centrality (Boldi and Vigna 2013)
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Assessing

Question
Is there a robust way to convince oneself that a certain centrality
measure is better than another?

Answer
Axiomatization. . .

• . . . hard axioms (characterize a centrality measure completely)
• . . . soft axioms (like the Ti axioms for topological spaces)
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Sensitivity to size

Idea: size matters!
Sk,p be the union of a k-clique and a p-cycle.

• if k →∞, every vertex of the clique becomes ultimately
strictly more important than every vertex of the cycle

• if p →∞, every vertex of the cycle becomes ultimately
strictly more important than every vertex of the clique
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Sensitivity to density

Idea: density matters!
Dk,p be made by a k-clique and a p-cycle connected by a single
bidirectional bridge:

• if k →∞, the vertex on the clique-side of the bridge becomes
more important than the vertex on the cycle-side.
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Score monotonicity

Adding an edge x → y strictly increases the score of y .
Doesn’t say anything about the score of other vertexes!
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Rank monotonicity

Adding an edge x → y . . .
• if y used to dominate z , then the same holds after adding the

edge
• if y had the same score as z , then the same holds after adding

the edge
• strict variant: if y had the same score as z , then y

dominates z after adding the edge
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Rank monotonicity

Monotonicity Other axioms
General Strongly connected

Centrality Score Rank Score Rank Size Density
Harmonic yes yes* yes yes* yes yes
Degree yes yes* yes yes* only k yes
Katz yes yes* yes yes* only k yes
PageRank yes yes* yes yes* no yes
Seeley no no yes yes no yes
Closeness no no yes yes no no
Lin no no yes yes only k no
Betweenness no no no no only p no
Dominant no no ? ? only k yes
HITS no no no no only k yes
SALSA no no no no no yes
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Kendall’s τ

Hollywood collaboration network

.uk (May 2007 snapshot)
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Correlation

• most geometric indices and HITS are rather correlated to one
another;

• Katz, degree and SALSA are also highly correlated;
• PageRank stands alone in the first dataset, but it is correlated

to degree, Katz, and SALSA in the second dataset;
• Betweenness is not correlated to anything in the first dataset,

and could not be computed in the second dataset due to the
size of the graph (106M vertices).
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Exact Algorithms
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Outline

1 Exact algorithms for static graphs
1 the standard algorithm for closeness
2 the standard algorithm for betweenness
3 a faster betweenness algorithm through shattering and

compression
4 a GPU-Based algorithm for betweenness

2 Exact algorithms for dynamic graphs
1 a dynamic algorithm for closeness
2 four dynamic algorithms for betweenness
3 a parallel streaming algorithm for betweenness
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Exact Algorithms for Static Graphs
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Exact Algorithm for Closeness
Centrality

(folklore)



39/200

Exact Algorithm for Closeness

Recall the definition:

c(x) = 1∑
y 6=x d(x , y)

Fastest known algorithm for closeness: All-Pairs Shortest Paths
• Runtime: O(nm + n2 log n)

Too slow for web-scale graphs!
• Later we’ll discuss an approximation algorithm
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A Faster Algorithm for Betweenness
Centrality

U. Brandes

Journal of Mathematical Sociology (2001)
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Why faster?

Let’s take a step back. Recall the definition

∑

s 6=x 6=t∈V
s 6=t

σst(x)
σst

• σst : no. of S (SPs) from s to t
• σst(x): no. of S from s to t that go through x

We could:
1 obtain all the σst and σst(x) for all x , s, t via APSP; and then
2 perform the aggregation to obtain b(x) for all x .

The first step takes O(nm + n2 log n), but the second step
takes. . .Θ(n3) (a sum of O(n2) terms for each of the n vertices).
Brandes’ algorithm interleaves the SP computation with the
aggregation, achieving runtime O(nm + n2 log n)

I.e., it is faster than the APSP approach
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Dependencies

Define: Dependency of s on v :

δs(v) =
∑

t 6=s 6=v

σst(v)
σst

Hence:
b(v) =

∑

s 6=v
δs(v)

Brandes proved that δs(v) obeys a recursive relation:

δs(v) =
∑

w :v∈Ps (w)

σsv
σsw

(1 + δs(w))

We can leverage this relation for efficient computation of
betweenness
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Recursive relation

Theorem (Simpler form)

If there is exactly one S from s to each t, then

δs(v) =
∑

w :v∈Ps (w)
(1 + δs(w))

Proof sketch:
• The Sdag from s is a tree;
• Fix t. v is either on the single S from s to t or not.
• v lies on all and only the SPs to vertices w for which v is a

predecessor (one S for each w) and the SPs that these lie on.
Hence the thesis.

The general version must take into account that not all SPs from s
to w go trough v .
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Brandes’ Algorithm

1 Initialize δs(v) to 0 for each v , s and b(w) to 0 for each w .
2 Iterate the following loop for each vertex s:

1 Run Dijkstra’s algorithm from s, keeping track of σsv for each
encountered vertex v , and inserting the vertices in a max-heap
H by distance from s;

2 While H is not empty:
1 Pop the max vertex t in H;
2 For each w ∈ Ps(t), increment δs(w) by σsw

σst
(1 + δs(t));

3 Increment b(t) by δs(t);
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Shattering and Compressing
Networks for Betweenness Centrality

A. E. Sarıyüce, E. Saule, K. Kaya, Ü. V. Çatalyürek

SDM ’13: SIAM Conference on Data Mining
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Intuition

Observations:
• There are vertices with predictable betweenness (e.g., 0, or

equal to one of their neighbors). We can remove them from
the graph (compression)

• Partitioning the (compressed) graph into small components
allows for faster SP computation (shattering)

Idea: We can iteratively compress & shatter until we can’t reduce
the graph any more.

Only at this point we run (a modified) Brandes’s algorithm
and then aggregate the “partial” betweenness in different
components.
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Introductory definitions

• Graph G = (V ,E )
• Induced graph by V ′ ⊆ V : GV ′ = (V ′,E ′ = V ′ × V ′ ∩ E )
• Neighborhood of a vertex v : Γ(v) = {u : (v , u) ∈ E}
• Side vertex: a vertex v such that GΓ(v) is a clique
• Identical vertices: two vertices u and v such that either

Γ(u) = Γ(v) or Γ(u) ∪ {u} = Γ(v) ∪ {v}
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Compression

Empirical / intuitive observations
• if v has degree 1, then b(v) = 0
• if v is a side vertex, then b(v) = 0
• if u and v are identical, then b(v) = b(w)

Compression:
• remove degree-1 vertices and side vertices; and
• merge identical vertices
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Shattering

• Articulation vertex: vertex v whose deletion makes the graph
disconnected

• Bridge edge: an edge e = (u, v) such that G ′ = (V ,E \ {e})
has more components than G (u and v are articulation
vertexes)

Shattering:
• remove bridge edges
• split articulation vertices in two copies, one per resulting

component
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Example of shattering and compression

Data: G = (V, E)
bc[v] 0, 8v 2 V
for each s 2 V do

S  empty stack, Q empty queue
P[v] empty list, �[v] 0, d[v] �1, 8v 2 V
Q.push(s), �[s] 1, d[s] 0
.Phase 1: BFS from s
while Q is not empty do

v  Q.pop(), S.push(v)
for all w 2 �(v) do

if d[w] < 0 then
Q.push(w)
d[w] d[v] + 1

if d[w] = d[v] + 1 then
1 �[w] �[w] + �[v]

P[w].push(v)
.Phase 2: Back propagation
�[v] 0, 8v 2 V
while S is not empty do

w  S.pop()
for v 2 P [w] do

2 �[v] �[v] + �[v]
�[w]
⇥ (1 + �[w])

if w 6= s then
3 bc[w] bc[w] + �[w]

return bc

Algorithm 1: Bc-Org

bc[v] = 2⇥((lvrv) + (n� lv � rv � 1)(lv + rv)) where lv
and rv are the number of vertices in the left and right
subtrees of v, respectively. This approach takes only
O(n) time. A similar argument can be given for cliques
since every vertex is a side vertex and has a 0 BC score.

As shown in Figure 1, BADIOS applies a series
of operations as a preprocessing phase: Let G = G0

be the initial graph, and G` be the one after the
`th shattering/compression operation. The ` + 1th
operation modifies a single connected component of G`

and generates G`+1. The preprocessing continues if
G`+1 is amenable to further modification. Otherwise,
it terminates and the final BC computation phase of
the framework begins.

3.1 Shattering Graphs: Let G = (V,E) be the
original graph. For simplicity, we assume that G is
connected. To correctly compute the BC scores after
shattering G, we assign a reach attribute to each vertex.
Let v0 be a vertex in C 0, a component in the shattered
graph G0: reach[v0] is the number of vertices in G which
are only reachable from C 0 via v0. At the beginning, we
set reach[v] = 1 for all v 2 V .

3.1.1 Shattering with articulation vertices: Let
u0 be an articulation vertex in a component C ✓ G`

after the `th operation of the preprocessing phase. We
first shatter C into k (connected) components Ci for
1  i  k by removing u0 from G` and adding a local

a

b b
b'

c

d

c{d}

e

c{d,e} f

g

h

1 32 54

Figure 1: (1) a is a degree-1 vertex and b is an articulation
vertex. The framework removes a and create a copy b0

to represent b in the bottom component. (2) There is no
degree-1, articulation, or identical vertex, or a bridge.
Vertices b and b0 are now side vertices and they are
removed. (3) Vertex c and d are now type-II identical
vertices: d is removed, and c is kept. (4) Vertex c and e
are now type-I identical vertices: e is removed, and c is
kept. (5) Vertices c and g are type-II identical vertices
and f and h are now type-I. The last reductions are not
shown but the bottom component is compressed to a
singleton vertex. The 5-cycle above cannot be reduced.

copy u0
i of u0 to each new component by connecting u0

i

to the same vertices u was connected within Ci. The
reach values for each local copy is set with

(3.4) reach[u0
i] =

X

v02C\Ci

reach[v0]

for 1  i  k. We will use org(v0) to denote the
mapping from V 0 to V , which maps a local copy v0 2 V 0

to the corresponding original copy in V .
At any time of the preprocessing phase, a vertex s 2

V has exactly one representative u0 in each component
C such that reach[u0] is incremented by one due to s.
This vertex is denoted as rep(C, s). Note that each
local copy is a representative of its original. Note also
that, if rep(C, s) = u0 and rep(C, t) = v0 with v0 6= u0

then org(u0) is on all s t paths in G.
Algorithm 2 computes the BC scores of the vertices

in a shattered graph. Note that the only di↵erence with
Bc-Org are lines 1 and 3, and if reach[v] = 1 for all
v 2 V , then the algorithms are equivalent. Hence, the
complexity of Bc-Reach is also O(mn) for a graph with
n vertices and m edges.

Let G = (V,E) be the initial graph, |V | = n, and
G0 = (V 0, E0) be the one shattered via preprocessing.
Let bc and bc0 be the scores computed by Bc-Org(G)
and Bc-Reach(G0), respectively. We will prove that

(3.5) bc[v] =
X

v02V 0|org(v0)=v

bc0[v0],
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Issues

Issues to take care of when iteratively compressing & shattering:

Example of issue
A vertex may have degree 1 only after we removed another vertex:
we can’t just remove and forget it, as its original betweenness was
not 0.

Example of issue
When splitting an articulation vertex into component copies, we
need to know, for each copy, how many vertices in other
components are reachable through that vertex.

...and more
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Solution

(Sketch)
• When we remove a vertex u, one of its neighbors (or an

identical vertex) v is elected as the representative for u (and
for all vertices that u was a representative of)

• We adjust the (current) values of b(v) and b(u) to
appropriately take into account the removal of u

the details are too hairy for a talk. . .
• When splitting articulation vertices or removing bridges,

similar adjustments take place
• Brandes’ algorithm is slightly modified to take the number of

vertices that a vertex represents into consideration when
computing the dependencies and the betweenness values
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Speedup
“org.” is Brandes’ algorithm, “best” is compress & shatter

Graph Time (in sec.)
name |V | |E| org. best Sp.
Power 4.9K 6.5K 1.47 0.60 2.4
Add32 4.9K 9.4K 1.50 0.19 7.6
HepTh 8.3K 15.7K 3.48 1.49 2.3
PGPgiant 10.6K 24.3K 10.99 1.55 7.0
ProtInt 9.6K 37.0K 11.76 7.33 1.6
AS0706 22.9K 48.4K 43.72 8.78 4.9
MemPlus 17.7K 54.1K 19.13 9.28 2.0
Luxemb. 114.5K 119.6K 771.47 444.98 1.7
AstroPh 16.7K 121.2K 40.56 19.41 2.0
Gnu31 62.5K 147.8K 422.09 188.14 2.2
CondM05 40.4K 175.6K 217.41 97.67 2.2

geometric mean 2.8
Epinions 131K 711K 2,193 839 2.6
Gowalla 196K 950K 5,926 3,692 1.6
bcsstk32 44.6K 985K 687 41 16.5
NotreDame 325K 1,090K 7,365 965 7.6
RoadPA 1,088K 1,541K 116,412 71,792 1.6
Amazon0601 403K 2,443K 42,656 36,736 1.1
Google 875K 4,322K 153,274 27,581 5.5
WikiTalk 2,394K 4,659K 452,443 56,778 7.9

geometric mean 3.8

Table 1: The graphs used in the experiments. Column
org. shows the original time of Bc-Org without any
modification. And best is the minimum execution time
achievable via BADIOS. The names of the matrices are
kept short where the full names can be found in the text.

sign-epinions, loc-gowalla, amazon0601, wiki-Talk),
protein-interaction (protein-interaction 1), circuit
simulation (add32, memplus), road (luxemburg.osm,
roadNet-PA), auto (bcsstk32), and web networks (web-
NotreDame, web-Google). We symmetrized the directed
graphs.

4.1 Graph ordering: As most of the graph-based
kernels in data mining, the order of the vertices and
edges accessed by Brandes’ algorithm is important due
to cache locality. If two vertices in a graph are close
to each other, a BFS will access them almost at the
same time. Hence, if we put close vertices in G
to close locations in memory, the number of cache
misses are expected to decrease. For this reason, the
framework initiates a BFS from a random vertex in
G and uses the queue order of the vertices as their
ordering in G. Further benefits of BFS ordering on the
execution time of a graph-based kernel are explained
in [5]. There are also some other graph ordering works
in the literature [7, 13].

For each graph in our set, the first and second bars
in Figure 2 show the time of Bc-Org with the natural
and BFS vertex ordering, respectively. For 18/19
graphs, the BFS ordering improved the performance.
It reduced the time by 14% on average and by 43%
for web-Google. Hence a BFS ordering of the graph is
usually preferable to the natural ordering of a real-life
network for long graph mining kernels such as BC.

4.2 Shattering and compressing graphs: For
each graph, we tested 7 di↵erent combinations of the
improvements proposed in this paper: They are denoted
with o, do, dao, dbao, dbaio, and dbaiso, where ‘o’ is the
BFS ordering, ‘d’ is degree-1 vertices, ‘b’ is bridge, ‘a’
is articulation vertices, ‘i’ is identical vertices, and ‘s’
is side vertices. The ordering of the letters denotes the
order of techniques in the loop.

We measure the preprocessing time and BC compu-
tation time separately. Figures 2(a) and 2(b) presents
the runtimes for each combination normalized w.r.t.
Brandes’ algorithm. For each graph, each figure has
7 stacked bars for the 7 combinations in the order de-
scribed above. In Figures 2(c)–2(d), the number of
edges remaining in the graph after the preprocessing
phase are given for di↵erent combinations. In the fig-
ures, components are represented by di↵erent colors and
6 combinations are investigated for each graph (since or-
dering does not change the structure of the graph).

As Figure 2 shows, there is a direct correlation
between the amount of edges in G0 and the overall
execution time. (Except for soc-sign-epinions and loc-
gowalla where the improvement is correlated with a
decrease in number of vertices, which are omitted for
space constraint.) This proves that our rationale behind
investigating shattering and compression techniques is
valid. Yet, since red is almost always the dominating
color, Figures 2(c)–2(d) show that real-life graphs do not
contain good articulation vertices which allow shattering
a graph into balanced sized components.

Table 1 shows the runtime of the base algorithm
as well as the runtime of the combination that lead
to the best improvement and the speedup obtained by
that combination. Almost for all graphs, BADIOS
provides a significant improvement. We observe up
to 16.5 speedup on large graphs. For wiki-Talk,
applying all techniques reduced the runtime from 5
days to 16 hours. Some of the techniques are shown
to be very useful for some graphs. For example, the
side-vertex removal enables a complete reduction for
memplus and add32. On the other hand, for some of
the graphs, e.g., web-Google and web-NotreDame, it
increases the runtime by a small amount. As the figure
shows, the identical-vertex removal technique is highly
e↵ective (see bcsstk32, cond-mat-2005, as-22july06 or
astro-ph). Also, as the results for PGPgiantcompo
show, shattering via both bridges and articulation
vertices is faster than shattering only via articulation
vertices. Note that although both combinations result
in the same graph, bridge removal is cheaper.

Although it is not that common, applying degree-
1- and identical-vertex removal can degrade the perfor-
mance by a small amount. When the number of vertices
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Composition of runtime
• Preproc is the time needed to compress & shatter, Phase 1 is

SSSP, Phase 2 is aggregation
• Different column for different variants of the algorithm (e.g.,

only compression of 1-degree vertices, only shattering of
edges)

• the lower the better
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Figure 2: The plots on the left and right show the results on graphs with less than and more than 500K edges,
respectively. The top plots show the runtime of the variants: base, o, do, dao, dbao, dbaio, dbaiso. The times are
normalized w.r.t. base and divided into three: preprocessing, the first phase and the second phase of the BC
computation. The bottom plots show the number of edges in the largest 200 components after preprocessing.

removed is small, their removal does not compensate the
overhead induced by the reach and ident attributes
in the algorithms. The only graph BADIOS does not
perform well on is the co-purchasing network of Amazon
website, amazon0601, where it brings less than 20% of
improvement. This graph contains large cliques formed
by the users purchasing the same item, and hence does
not have enough number of special vertices.

The 7 combinations are compared with each other
using a performance profile graph presented in Figure 3.
A point (r, p) in the profile means that with p proba-
bility, the time of the corresponding combination on a
graph G is at most r times worse than the best time
obtained for that G. Hence, the closer to the y-axis is
the better the combination is.

One can easily see that any parameter combination
of BADIOS is better than the base algorithm. The
combination with only graph ordering (o) has the worse
performance profile of BADIOS and it is never opti-
mal. According to the graph, most of the time, using
all possible techniques is the best idea. This strategy
is the optimal one with more than 60% probability. If
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Figure 3: Performance profile of the 7 combinations for
BADIOS on all the selected graphs.

only a little information is available dbaiso should be
the default choice for BADIOS. However, given that
preprocessing does not take too much time, one can run
only the preprocessing first to get the amount of re-
duction obtained by each combination of parameters.
Then, depending on that reduction, the best path can
be selected. That way, the overhead induced of by the
slight more expensive kernels can be avoided.
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Parallelism

• Fine grained: single concurrent BFS
• Only one copy of auxiliary data structures
• Synchronization needed
• Better for GPUs, which have small memory

• Coarse grained: many independent BFSs
• Sources are independent, embarrassingly parallel
• More memory needed
• Better for CPUs, which have large memory
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GPU

A GPU is especially well-suited to address problems that
can be expressed as data-parallel computations - the
same program is executed on many data elements in
parallel - with high arithmetic intensity - the ratio of
arithmetic operations to memory operations.
Because the same program is executed for each data
element, there is a lower requirement for sophisticated
flow control, and because it is executed on many data
elements and has high arithmetic intensity, the memory
access latency can be hidden with calculations instead of
big data caches.1

1docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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Execution model

• One thread per data element
• Thread scheduled in blocks

with barriers (wait for others
at the end)

• Program runs on the whole
data (kernel)

• Minimize synchronization
• Balance load
• Coalesce memory access
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Intuition

• GPUs have huge number of cores
• Use them to parallelize BFS
• One core per vertex, or one core per edge
• Vertex-based parallelism creates load imbalance for graphs

with skewed degree distribution
• Edge-based parallelism requires high memory usage

• Use vertex-based parallelism
• Virtualize high-degree vertices to address load imbalance
• Reduce memory usage by removing predecessors lists
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Difference

u

v1 ... ... vk

...

Vertex-based BFS

u

v1 ... ... vk

...

Edge-based BFS
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Vertex-based

• For each level, for each
vertex in parallel

• If vertex is on level
• For each neighbor,

adjust P and σ
• Atomic update on σ needed

(multiple paths can be
discovered concurrently)

• While backtracking, if
u ∈ P(v) accumulate
δ(u) = δ(u) + δ(v)

• Possible load imbalance if
degree skewed

m ⌧ n2 of them. To store the same information, Jia et al.
used an array of size m. For an edge e 2 E, indexed as
in the order of CSR adj array, they set P[e] to 1 if e is a
successor-predecessor edge and leave it 0, otherwise.

Let u be a vertex at level `, when u is being processed in
the backward-step kernel, it gathers all �[v]s from its succes-
sor vertices, i.e., all v 2 V such that Pv[u] = 1. As Figure 1
shows, the vertex-based approach requires n+m+1 memory
in total to store the graph. Here and in the rest of the paper,
the memory usage of each graph representation is given in
terms of the number of entries it contains.

Algorithm 2: Vertex: vertex-based parallel BC

· · ·
` 0
.Forward phase
while cont = true do

cont false
.Forward-step kernel
for each u 2 V in parallel do

1 if d[u] = ` then
2 for each v 2 �(u) do
3 if d[v] = �1 then

d[v] ` + 1, cont true
else if d[v] = `� 1 then Pv [u] 1

4 if d[v] = ` + 1 then �[v]
atomic �[v] + �[u]

` ` + 1
· · ·
.Backward phase
while ` > 1 do

` `� 1
.Backward-step kernel
for each u 2 V in parallel do

if d[u] = ` then
5 for each v 2 �(u) do
6 if Pv [u] = 1 then �[u] �[u] + �[v]

.Update bc values by using Equation (5)
· · ·

3.2 Edge-based parallelism
A scale-free network is a network whose degree distribu-

tion follows a power law, at least asymptotically. That is
there are many vertices with a degree that is lower than av-
erage, and there are some with very high degrees, yielding
a very skewed degree distribution. Social networks we have
today fit to this definition. And others such as collabora-
tion networks, semantic networks, and protein-protein in-
teraction networks also do. In a GPU, the threads in a
warp run at the same time and must wait for each other to
finish. When the variance of the degrees is high and vertex-
based parallelism is used, a warp’s threads most likely have
an imbalanced load distribution. Edge-based parallelism is
proposed to cope with this problem and as our experimental
results show, it performs much better on scale-free graphs.
The pseudocode of the forward and backward phases of the
edge-based approach are given in Algorithm 3 in which dif-
ferent edges of the same vertex will be processed by di↵erent
threads. The algorithm uses the COO format (as shown in
Figure 1) in order to have an easy access to individual edges.

Processing a neighbor in the forward phase is similar to
that of the vertex-based approach (lines 3–4 of Algorithm 2).
But the number of times the line 1s executed in Algorithms 2
and 3 is di↵erent. Since there are n vertices and m edges,
the number of memory accesses due to this line is more in
the edge-based approach. However, for social networks, m

is in the order of O(n), and most of these memory accesses
will be coalesced since, as shown in Figure 1(c), the next
value in is array is either the same or one more.

Although the updates in the backward-phase of the vertex-
based approach are handled without using atomic instruc-
tions, in edge-based parallelism, when Pv[u] = 1 for an edge
(u, v) which is currently being processed, the update oper-
ation on �[u] must be atomic. Because, there can be other
successor-predecessor edges (u, v0) 2 E being processed con-
currently by other threads. In total, two atomic operations
per successor-predecessor relationship are needed in edge-
based parallelism. Hence, the edge-based approach uses
both more memory and more atomic operations than the
vertex-based one. But it benefits from better memory coa-
lescing and better load distribution.

Algorithm 3: Edge: edge-based parallel BC

· · ·
` 0
.Forward phase
while cont = true do

cont false
.Forward-step kernel

for each (u, v) 2 E in parallel do
1 if d[u] = ` then

· · · .same as vertex-based forward step

` ` + 1
· · ·
.Backward phase
while ` > 1 do

` `� 1
.Backward-step kernel

for each (u, v) 2 E in parallel do
if d[u] = ` then

2 if Pv [u] = 1 then �[u]
atomic �[u] + �[v]

.Update bc values by using Equation (5)
· · ·

3.3 Vertex virtualization for BC
The vertex-based parallelism su↵ers from load balancing,

and the edge-based parallelism uses more memory and more
atomic operations. Here, we propose a vertex virtualization
technique to alleviate both of these problems at the same
time. The technique replaces the high-degree vertices with
a number of virtual vertices each having at most mdeg (max-
imum degree) edges and uses

n0 =
X

v2V

⇠ |�(v)|
mdeg

⇡

virtual vertices in the modified graph storage scheme. The
value of mdeg can be chosen by the user. In our preliminary
experiments, we have experimented with various mdeg val-
ues (2, 4, and 8), and the results were close to each other
but 4 was just slightly better, hence in our experiments we
used this value.

Figure 1(d) shows the virtual-CSR representation for the
toy graph in Figure 1(a) after virtualization with mdeg = 4.
There are three arrays: vmap maps the virtual vertices to real
vertices in V , vptrs is similar to the ptrs in CSR and each
entry shows the first neighbor of the corresponding virtual
vertex in adjs which is the same as the one in the traditional
CSR.

The pseudocode of the forward and backward phases of
the virtualization-based approach are given in Algorithm 4.
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Edge-based

• For each level, for each edge
in parallel

• If edge endpoint is on level
• Same as above...
• While backtracking, if

u ∈ P(v) accumulate
δ(u) = δ(u) + δ(v)
atomically

• Multiple edges can try to
update δ concurrently

• More memory (edge-based
layout) and more atomic
operations

m ⌧ n2 of them. To store the same information, Jia et al.
used an array of size m. For an edge e 2 E, indexed as
in the order of CSR adj array, they set P[e] to 1 if e is a
successor-predecessor edge and leave it 0, otherwise.

Let u be a vertex at level `, when u is being processed in
the backward-step kernel, it gathers all �[v]s from its succes-
sor vertices, i.e., all v 2 V such that Pv[u] = 1. As Figure 1
shows, the vertex-based approach requires n+m+1 memory
in total to store the graph. Here and in the rest of the paper,
the memory usage of each graph representation is given in
terms of the number of entries it contains.

Algorithm 2: Vertex: vertex-based parallel BC

· · ·
` 0
.Forward phase
while cont = true do

cont false
.Forward-step kernel
for each u 2 V in parallel do

1 if d[u] = ` then
2 for each v 2 �(u) do
3 if d[v] = �1 then

d[v] ` + 1, cont true
else if d[v] = `� 1 then Pv [u] 1

4 if d[v] = ` + 1 then �[v]
atomic �[v] + �[u]

` ` + 1
· · ·
.Backward phase
while ` > 1 do

` `� 1
.Backward-step kernel
for each u 2 V in parallel do

if d[u] = ` then
5 for each v 2 �(u) do
6 if Pv [u] = 1 then �[u] �[u] + �[v]

.Update bc values by using Equation (5)
· · ·

3.2 Edge-based parallelism
A scale-free network is a network whose degree distribu-

tion follows a power law, at least asymptotically. That is
there are many vertices with a degree that is lower than av-
erage, and there are some with very high degrees, yielding
a very skewed degree distribution. Social networks we have
today fit to this definition. And others such as collabora-
tion networks, semantic networks, and protein-protein in-
teraction networks also do. In a GPU, the threads in a
warp run at the same time and must wait for each other to
finish. When the variance of the degrees is high and vertex-
based parallelism is used, a warp’s threads most likely have
an imbalanced load distribution. Edge-based parallelism is
proposed to cope with this problem and as our experimental
results show, it performs much better on scale-free graphs.
The pseudocode of the forward and backward phases of the
edge-based approach are given in Algorithm 3 in which dif-
ferent edges of the same vertex will be processed by di↵erent
threads. The algorithm uses the COO format (as shown in
Figure 1) in order to have an easy access to individual edges.

Processing a neighbor in the forward phase is similar to
that of the vertex-based approach (lines 3–4 of Algorithm 2).
But the number of times the line 1s executed in Algorithms 2
and 3 is di↵erent. Since there are n vertices and m edges,
the number of memory accesses due to this line is more in
the edge-based approach. However, for social networks, m

is in the order of O(n), and most of these memory accesses
will be coalesced since, as shown in Figure 1(c), the next
value in is array is either the same or one more.

Although the updates in the backward-phase of the vertex-
based approach are handled without using atomic instruc-
tions, in edge-based parallelism, when Pv[u] = 1 for an edge
(u, v) which is currently being processed, the update oper-
ation on �[u] must be atomic. Because, there can be other
successor-predecessor edges (u, v0) 2 E being processed con-
currently by other threads. In total, two atomic operations
per successor-predecessor relationship are needed in edge-
based parallelism. Hence, the edge-based approach uses
both more memory and more atomic operations than the
vertex-based one. But it benefits from better memory coa-
lescing and better load distribution.

Algorithm 3: Edge: edge-based parallel BC

· · ·
` 0
.Forward phase
while cont = true do

cont false
.Forward-step kernel

for each (u, v) 2 E in parallel do
1 if d[u] = ` then

· · · .same as vertex-based forward step

` ` + 1
· · ·
.Backward phase
while ` > 1 do

` `� 1
.Backward-step kernel

for each (u, v) 2 E in parallel do
if d[u] = ` then

2 if Pv [u] = 1 then �[u]
atomic �[u] + �[v]

.Update bc values by using Equation (5)
· · ·

3.3 Vertex virtualization for BC
The vertex-based parallelism su↵ers from load balancing,

and the edge-based parallelism uses more memory and more
atomic operations. Here, we propose a vertex virtualization
technique to alleviate both of these problems at the same
time. The technique replaces the high-degree vertices with
a number of virtual vertices each having at most mdeg (max-
imum degree) edges and uses

n0 =
X

v2V

⇠ |�(v)|
mdeg

⇡

virtual vertices in the modified graph storage scheme. The
value of mdeg can be chosen by the user. In our preliminary
experiments, we have experimented with various mdeg val-
ues (2, 4, and 8), and the results were close to each other
but 4 was just slightly better, hence in our experiments we
used this value.

Figure 1(d) shows the virtual-CSR representation for the
toy graph in Figure 1(a) after virtualization with mdeg = 4.
There are three arrays: vmap maps the virtual vertices to real
vertices in V , vptrs is similar to the ptrs in CSR and each
entry shows the first neighbor of the corresponding virtual
vertex in adjs which is the same as the one in the traditional
CSR.

The pseudocode of the forward and backward phases of
the virtualization-based approach are given in Algorithm 4.



63/200

Vertex virtualization

• AKA, edge batching,
hybrid between vertex- and
edge-based

• Split high degree vertices
into virtual ones with
maximum degree mdeg

• Equivalently, pack up to
mdeg edges belonging to
the same vertex together

• Very small mdeg = 4
• Need additional auxiliary

maps

Algorithm 4: Virtual: BC with virtual vertices

· · ·
` 0
.Forward phase
while cont = true do

cont false
.Forward-step kernel
for each virtual vertex uvir in parallel do

u vmap[uvir]
if d[u] = ` then

1 for each v 2 �vir(uvir) do
2 if d[v] = �1 then

d[v] ` + 1, cont true

3 if d[v] = ` + 1 then �[v]
atomic �[v] + �[u]

` ` + 1
· · ·
.Backward phase
while ` > 1 do

` `� 1
.Backward-step kernel
for each virtual vertex uvir in parallel do

u vmap[uvir]
if d[u] = ` then

sum 0
4 for each v 2 �(u) do
5 if d[v] = ` + 1 then sum sum + �[v]

6 �[u]
atomic �[u] + sum

.Update bc values by using Equation (5)
· · ·

In the forward phase, each thread processes the edges of a
virtual vertex uvir. The real vertex u is reached via vmap

and �[u] is used to update the number of shortest paths to
neighbors of uvir. In the backward phase, a similar approach
is used.

Notice that Algorithm 4 does not store the predecessor-

successor edges. Instead it checks if d[v]
?
= d[u]+1 to decide

whether an edge (u, v) is a predecessor-successor edge or
not. Our preliminary experiments showed no significant dif-
ference in runtime between storing the predecessor-successor
information or using the distances. Therefore, we chose not
to store it in any of our GPU implementations since we can
save a significant amount of memory.

There are four main advantages of virtual-CSR over the
other representatives:

1. When mdeg is small, e.g., 4, the load imbalance among
the threads in a warp will not be as troublesome as the
one in traditional CSR.

2. Only the threads which are processing the frontier ver-
tices are active during a forward/backward step in the
vertex-based approach. Hence, the idle threads need to
wait others. In virtual-CSR, the virtual vertices which
represent the same vertex v 2 V are labeled consec-
utively and probably, they will be in the same warp.
Hence, when v is in the frontier, all its virtual vertices
in the virtual-CSR will be frontier too. This probably
will increase the average ratio of the number of active
vertices in a warp.

3. As shown in Algorithm 3, the updates on � in the back-
ward phase must be atomic when the edge-based par-
allelism is used. The number of such atomic operations
is equal to the number of predecessor-successor edges
in E. Usually, a high fraction of the edges are such

edges in practice. With virtualization, the number of
atomic operations in the backward phase is reduced to
n0 (line 6 of Algorithm 4) since the all the updates are
computed and stored in a local variable sum (line 5 of
Algorithm 4).

4. In total, the virtual-CSR storage uses 2n0+m+1 mem-
ory. We can assume that n0 is in the order of m/mdeg.
Hence, compared with the edge-based approach, when
mdeg = 4, this saves an amount of memory of approx-
imately m/2.

3.3.1 Stride-CSR representation
As we will experimentally show, the virtual-CSR repre-

sentation is e↵ective and e�cient. But it can be further
improved by reorganizing the memory accesses to adjs. As
mentioned above, the virtual vertices are consecutively la-
beled and the threads processing them will probably be in
the same warp. Each such thread accesses a continuous part
of adjs of size at most mdeg. It means that the threads in a
warp access adjs in a regularly spaced fashion over a range
of warpsize ⇥mdeg. Such accesses are unlikely to be coa-
lesced.

The stride-CSR representation (shown in Figure 1(e)) al-
lows better coalescing. In addition to original CSR arrays
ptrs and adjs, it needs three additional arrays: vmap is
the same mapping array used in virtual-CSR, offset shows
the virtual vertex number within the real vertex, and nvir

shows the number of virtual vertices for each vertex in V .
By using this additional information we distribute the edges
of v to its virtual vertices in a round robin fashion. Hence,
the memory accesses by consecutive threads, which process
these virtual vertices, will also be consecutive and better
coalesced. Although it uses more memory, experimental re-
sults show that the memory access scheme of stride-CSR is
superior to that of virtual-CSR for many graphs. From now
on, we will call the version of the code that uses stride-CSR
as Stride.

4. COMPRESSING THE GRAPH FOR BC
Brandes’ algorithm relies on the shortest path graph rooted

on a given source of the graph. Two di↵erent sources can
expose almost the same shortest path graph. And in some
cases, it is possible to exploit this and other structures by
considering both of them simultaneously [1, 18].

In particular, we are interested in removing vertices with
exactly one neighbor, i.e., degree-1 vertices. Let u 2 V be
such a vertex with a neighbor v 2 V . If u lies on a shortest
path in G, it must be one of the endpoints. Hence, BC of
u is 0. However, the vertex can not be just removed since
�su(w) is not necessarily equal to 0 for all w 2 V . All of the
shortest paths that go to u must be through v; indicating
that �su(w) = �sv(w), for all w 6= v 2 V . Notice that the
expression is not correct for w = v since �sv(v) = 0 and
�su(v) = 1: the shortest path to v does not go through
v (but the paths to u go through v). Because the graph
is undirected, a similar relation holds between �us(w) and
�vs(w).

We introduce the reach array, which indicates that ver-
tex w represents reach[w] vertices (including itself). The
di↵erence in the BC computation only changes two lines of
Algorithm 1. The initialization of �[v] values (line 3 of Al-
gorithm 1) should be multiplied by reach[v] to account for
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Benefits

• Compared to vertex-based:
• Reduce load imbalance

• Compared to edge-based:
• Reduce number of atomic operations
• Reduce memory footprint

• Predecessors stored implicitly in the Sdag level (reduced
memory usage)

• Memory layout can be further optimized to coalesce latency
via striding:

• Distribute edges to virtual vertices in round-robin
• When accessed in parallel, they create faster sequential

memory access pattern
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Results
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Figure 4: Comparison of GPU implementations.
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Figure 5: Absolute performance for sequential CPU
and GPU stride expressed in Traversed Edge Per
Second (TEPS)

a warp, the number of completely empty blocks, and mini-
mize the overhead due to thread divergence.

Figure 6(a) shows the impact for the sequential CPU case.
In the CPU, graph reduction has almost no impact on com-
orkut but it brings a 7-fold improvement on wiki-Talk. On
average, graph reduction brings a 2-fold improvement. Graph
ordering brings barely any improvement on two graphs, but
it brings a 53% improvement on web-google. When graph
reduction and ordering combined, total graph modifications
bring up to 7.6-fold improvement, with an average of 2.21.

Figure 6(b) shows the impact of the graph manipulation
for GPU Stride implementation. The behavior is similar to
the one observed on the CPU. The most notable di↵erence
is that ordering harms performance on soc-sign-epinions and
wiki-Talk. Though, it brought a 35% improvement on web-
Google.

Note that there are two sources of improvement that spurs
from graph reduction. First, since there are less vertices,
there are less source to execute. Second, the graph is smaller
which makes each source faster.

5.3 Heterogeneous execution
In the last set of experiments, we evaluated performance

of using CPU alone, GPU alone, and using CPU and GPU
together for BC computation. Figure 7 shows the perfor-
mance obtained by using only CPUs (8 CPU threads), us-
ing only GPU (proposed two methods Virtual and Stride
presented) and using both the CPUs and the GPU at the
same time (labeled as “Heterogeneous”). Notice that in the
later (heterogeneous) case, we utilize only 7 threads on the
CPU to dedicate one core to drive the GPU.

The source based parallelism used on the CPU shows an
average parallel speedup of 6 which indicates that the par-
allel CPU implementation, even though not linear, is fairly
e�cient. (Figure 7 shows an average speedup of 13, but there
is a factor of 2.2 which comes from graph modifications and
not parallelism.)

The GPU Stride implementation reaches higher perfor-
mance than the parallel CPU implementation in 5 graphs
(amazon0601, com-orkut, soc-LiveJournal, web-Google, and
wiki-Talk), while the CPU implementation obtains higher
performance on 3 graphs (web-Google, soc-sign-epinions and
loc-gowalla). If one computes geometric mean, on average
the parallel CPU implementation and the GPU implemen-
tation reach the same performance (less than 1% di↵erence
in the average). This indicates that the correct choice be-
tween CPU and GPU for betweenness centrality is strongly
input dependent which makes a heterogeneous collaboration
between CPU and GPU important.

Using both the CPU and the GPU allows to reach the
highest performance in all the graphs of our dataset. It
improves the best mono-device performance by a factor a
1.29 on web-NotreDame where the performance of the CPU
and GPU are the most di↵erent and by a factor of 1.95 on
amazon0601 where the performance of both the CPU and
GPU are the most similar.

6. CONCLUSION AND FUTURE WORK
In this work, we investigated a set of techniques to speed

up the betweenness centrality computation on GPUs and
CPU/GPU heterogeneous architectures. Our techniques in-
clude leveraging the topological properties of graph, i.e.,
compressing by removing degree-1 vertices, as well as utiliz-
ing the architectures e�ciently. We provided four di↵erent
GPU algorithms and compared them experimentally. Com-
bining all the techniques yield a 104 speedup on a large social
network. Our techniques in GPU algorithms can be applied
to shortest-path algorithms, and compression techniques we
provided can be used to speed-up graph algorithms with
similar objectives with betweenness centrality.

The e�ciency of our GPU implementation depends on the
diameters of the graphs. In the worst case, the diameter can
be n and the total work will be quadratic on the number of
vertices. Social networks, in general, obey the smallworld
phenomenon and their diameters are small. As a future
work, we plan to investigate faster betweenness centrality
computation techniques on graphs with large diameters by
existing [11, 14] and novel techniques. Also, we plan to
incorporate further graph compression techniques [18] to be
used in heterogeneous architectures. Apart from that, we are
planning to make more detailed analysis on proposed GPU
algorithms on social networks with di↵erent characteristics,
like diameter, density and degree distribution.

Speedup over Brandes’ on CPU on real graphs with 32-core GPU
(s = 1k, . . . , 100k)

• Results computed only on a sample of sources and
extrapolated linearly
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Exact Algorithms for Dynamic Graphs
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A Fast Algorithm for Streaming
Betweenness Centrality

O. Green, R. McColl, D. A. Bader

SocialCom ’12: International Conference on Social Computing
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Intuition

• Make Brandes’ algorithm incremental
• Keep additional data structures to avoid recomputing partial

results
• Rooted Sdag for each source s ∈ V
• Depth in the tree for t = distance of t from s

• Re-run parts of modified Brandes’ algorithm on edge update
• Support only edge addition (on unweighted graphs)
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Data structures

• One Sdags for each source s ∈ V , which contains for each
other vertex t ∈ V :

• Distance dst , paths σst , dependencies δs(t), predecessors Ps(t)
• Additional per-level queues for exploration

• On addition of edge (u, v), let dd = |dsu − dsv |:
• dd = 0 same level
• dd = 1 adjacent level
• dd > 1 non-adjacent level
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Same level addition

• dd = 0
• Edge creates no new

shortest paths
• No change to betweenness

due to this source

Figure 1. Insertion of edge e = (u, v) connects two vertices that are on the same level in the BFS tree of root s.
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Figure 2. Insertion of edge e = (u, v) connects two vertices that are in adjacent levels in BFS tree of root s. The new edge does not cause any vertex to
change its position in the given BFS tree.
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be no updates of betweenness centrality. This is denoted
in Fig. 1.

2) |ds(u) � ds(v)| = 1 - the vertices are in adjacent levels
prior to the addition. ds(v) = ds(u)+1. This is denoted
in Fig. 2.

3) |ds(u) � ds(v)| � 2 - the vertices are not in adjacent
levels prior to the addition. ds(v) = ds(u) + � , � � 2.
This is denoted in Fig. 3.

4) (|ds(u) � ds(v)| = 1) ^ (ds(v) < |V | _ ds(u) < |V |) -
the vertices do not have a path to each other prior to the
addition of the edge. For undirected graphs this means

that two components are about to be connected. This is
denoted in Fig. 4.

These scenarios will be explained in the following sub
sections.

C. Same Level Insertion

In this subsection we show that the insertion of an edge
between vertices in the same level of a give BFS tree,
as depicted in Fig. 1, does not require an any additional
computation.
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Adjacent level addition

• dd = 1
• Let uhigh = u, ulow = v
• Edge creates new shortest

paths
• Sdag unchanged
• Changes in σ confined to

sub-dag rooted in ulow

• Changes in δ also spread
above to decrease old
dependency and account for
new dependency

• Example: w and
predecessors have now only
1/2 of dependency on
sub-dag rooted in ulow

Figure 1. Insertion of edge e = (u, v) connects two vertices that are on the same level in the BFS tree of root s.
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Figure 2. Insertion of edge e = (u, v) connects two vertices that are in adjacent levels in BFS tree of root s. The new edge does not cause any vertex to
change its position in the given BFS tree.
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be no updates of betweenness centrality. This is denoted
in Fig. 1.

2) |ds(u) � ds(v)| = 1 - the vertices are in adjacent levels
prior to the addition. ds(v) = ds(u)+1. This is denoted
in Fig. 2.

3) |ds(u) � ds(v)| � 2 - the vertices are not in adjacent
levels prior to the addition. ds(v) = ds(u) + � , � � 2.
This is denoted in Fig. 3.

4) (|ds(u) � ds(v)| = 1) ^ (ds(v) < |V | _ ds(u) < |V |) -
the vertices do not have a path to each other prior to the
addition of the edge. For undirected graphs this means

that two components are about to be connected. This is
denoted in Fig. 4.

These scenarios will be explained in the following sub
sections.

C. Same Level Insertion

In this subsection we show that the insertion of an edge
between vertices in the same level of a give BFS tree,
as depicted in Fig. 1, does not require an any additional
computation.
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Algorithm
• During exploration:

• Fix σ
• Mark visited vertices
• Enqueue for further

processing

• During backtracking:
• Fix δ and b
• Recurse up the whole

Sdag

Lemma 1. Given an edge e = (u, v) such that ds(u) = ds(v),
no shortest paths go through e.

Proof 1. Assume by contradiction that for some vertex w there
is a shortest path between s and w that goes through e. This
path is denoted by vertices p1, p2, ..., pu, pv, ..., pw. Obviously,
v has a path to s as well, this path is denoted by p̂1, p̂2, ..., pv .
By creating an alternate path p̂1, p̂2, ..., pv, ..., pw we have
created a shorter path in contradiction with the assumption.

Lemma 2. The BFS structure is maintained and betweenness
centrality is updated correctly when a new edge connects
vertices in the same level.

Proof 2. Following Lemma 1, no new shortest paths are
created; therefore, the BFS structure is maintained and there
is no change in the betweenness centrality in the given BFS
tree.

Consequently, for edges that connect vertices that are in the
same level of the BFS structure, no computation needs to be
done.

D. Adjacent Level Insertion

In this subsection we present the algorithm for inserting
a new edge between vertices that are in adjacent levels of a
given tree with root s, as is depicted in Fig. 2. We denote
uhigh = u and ulow = v for this scenario. The BFS tree of
s does not change due to the insertion. Prior to the insertion
d(ulow) = d(uhigh)+1. This is still correct after the insertion.
While new shorter paths have been created, the distance for all
the vertices in the tree stay the same. However, the number of
shortest paths going between the root and some of the vertices
will change.

The pseudo-code for the new algorithm can be found in
Algorithm 2. The justification for the pseudo code made will
be presented in the following Lemmas.

Lemma 3. Given vertex ulow, the only vertices that will have
new shortest paths from the root, s, are the vertices found in
the BFS subtree starting at ulow in s’s BFS tree. The BFS
traversal starting at ulow can only move down s’s BFS tree.

Definition 1. �̂s(v) is the new number of shortest paths to v.

In Stage 1 of Algorithm 2 �̂s(v)  �s(v). After Stage 1,
�̂s(v) is updated if there are new paths, otherwise it remains
unchanged. The number of new paths will be maintained in
the array dP , where dP [v] is the number of new shortest paths
to v.

Definition 2. �̂s(v) is the new accumulative sum for vertex v.

In the beginning of Stage 3, �̂s(v) is initialized to zero for
all vertices.

Proof 3. Assume by contradiction that some vertex w has
a shortest path to the root, s, through ulow and that w is
not found in a BFS traversal starting at v. Because w has
a shortest path to the root via ulow it has some ancestral

Algorithm 2: Insertion of a new edge in a specific BFS
tree where the vertices are in adjacent levels prior to the
insertion.

Stage 1 - local initilization
QBFS  empty queue;
for level 1 to V do

Q[level] empty queue;

dP [v] 0, v 2 8V ;
t[v] Not-Touched , v 2 8V ;
�̂[v] �[v], v 2 8V ;
enqueue ulow ! Q[d[ulow]];
enqueue ulow ! QBFS ;
t[ulow] Down;
dP [ulow] �[uhigh];
�̂[ulow] �̂[ulow] + dP [ulow];
Stage 2 - BFS traversal starting at ulow

while Q not empty do
dequeue v  Q;
for all neighbor w of v do

if d[w] = (d[v] + 1) then
if t[w] = Not-Touched then

enqueue w ! QBFS ;
enqueue w ! Q[d[w]];
t[w] Down;
d[w] d[v] + 1;
dP [w] dP [v];

else
dP [w] dP [w] + dP [v];

�̂[w] �̂[w] + dP [v];

Stage 3 - modified dependency accumulation
ˆ�[v] 0, v 2 8V ; level V ;

while level>0 do
while Q[level] not empty do

dequeue w  Q[level];
for all v 2 P [w] do

if t[v] =Not-Touched then
enqueue v ! Q[level � 1];
t[v] Up;
�̂[v] �[v];

�̂[v] �̂[v] + �̂[v]
�̂[w] (1 + �̂[w]);

if t[v] = Up ^(v 6= uhigh _ w 6= ulow) then
�̂[v] �̂[v]� �[v]

�[w] (1 + �[w]);

if w 6= r then
CB [w] CB [w] + �̂[w]� �[w];

level level � 1;

�[v] �̂[v], v 2 8V ;
for v 2 V do

if t[v] 6= Not-Touched then
�[v] �̂[v], v 2 8V

Lemma 1. Given an edge e = (u, v) such that ds(u) = ds(v),
no shortest paths go through e.

Proof 1. Assume by contradiction that for some vertex w there
is a shortest path between s and w that goes through e. This
path is denoted by vertices p1, p2, ..., pu, pv, ..., pw. Obviously,
v has a path to s as well, this path is denoted by p̂1, p̂2, ..., pv .
By creating an alternate path p̂1, p̂2, ..., pv, ..., pw we have
created a shorter path in contradiction with the assumption.

Lemma 2. The BFS structure is maintained and betweenness
centrality is updated correctly when a new edge connects
vertices in the same level.

Proof 2. Following Lemma 1, no new shortest paths are
created; therefore, the BFS structure is maintained and there
is no change in the betweenness centrality in the given BFS
tree.

Consequently, for edges that connect vertices that are in the
same level of the BFS structure, no computation needs to be
done.

D. Adjacent Level Insertion

In this subsection we present the algorithm for inserting
a new edge between vertices that are in adjacent levels of a
given tree with root s, as is depicted in Fig. 2. We denote
uhigh = u and ulow = v for this scenario. The BFS tree of
s does not change due to the insertion. Prior to the insertion
d(ulow) = d(uhigh)+1. This is still correct after the insertion.
While new shorter paths have been created, the distance for all
the vertices in the tree stay the same. However, the number of
shortest paths going between the root and some of the vertices
will change.

The pseudo-code for the new algorithm can be found in
Algorithm 2. The justification for the pseudo code made will
be presented in the following Lemmas.

Lemma 3. Given vertex ulow, the only vertices that will have
new shortest paths from the root, s, are the vertices found in
the BFS subtree starting at ulow in s’s BFS tree. The BFS
traversal starting at ulow can only move down s’s BFS tree.

Definition 1. �̂s(v) is the new number of shortest paths to v.

In Stage 1 of Algorithm 2 �̂s(v)  �s(v). After Stage 1,
�̂s(v) is updated if there are new paths, otherwise it remains
unchanged. The number of new paths will be maintained in
the array dP , where dP [v] is the number of new shortest paths
to v.

Definition 2. �̂s(v) is the new accumulative sum for vertex v.

In the beginning of Stage 3, �̂s(v) is initialized to zero for
all vertices.

Proof 3. Assume by contradiction that some vertex w has
a shortest path to the root, s, through ulow and that w is
not found in a BFS traversal starting at v. Because w has
a shortest path to the root via ulow it has some ancestral

Algorithm 2: Insertion of a new edge in a specific BFS
tree where the vertices are in adjacent levels prior to the
insertion.

Stage 1 - local initilization
QBFS  empty queue;
for level 1 to V do

Q[level] empty queue;

dP [v] 0, v 2 8V ;
t[v] Not-Touched , v 2 8V ;
�̂[v] �[v], v 2 8V ;
enqueue ulow ! Q[d[ulow]];
enqueue ulow ! QBFS ;
t[ulow] Down;
dP [ulow] �[uhigh];
�̂[ulow] �̂[ulow] + dP [ulow];
Stage 2 - BFS traversal starting at ulow

while Q not empty do
dequeue v  Q;
for all neighbor w of v do

if d[w] = (d[v] + 1) then
if t[w] = Not-Touched then

enqueue w ! QBFS ;
enqueue w ! Q[d[w]];
t[w] Down;
d[w] d[v] + 1;
dP [w] dP [v];

else
dP [w] dP [w] + dP [v];

�̂[w] �̂[w] + dP [v];

Stage 3 - modified dependency accumulation
ˆ�[v] 0, v 2 8V ; level V ;

while level>0 do
while Q[level] not empty do

dequeue w  Q[level];
for all v 2 P [w] do

if t[v] =Not-Touched then
enqueue v ! Q[level � 1];
t[v] Up;
�̂[v] �[v];

�̂[v] �̂[v] + �̂[v]
�̂[w] (1 + �̂[w]);

if t[v] = Up ^(v 6= uhigh _ w 6= ulow) then
�̂[v] �̂[v]� �[v]

�[w] (1 + �[w]);

if w 6= r then
CB [w] CB [w] + �̂[w]� �[w];

level level � 1;

�[v] �̂[v], v 2 8V ;
for v 2 V do

if t[v] 6= Not-Touched then
�[v] �̂[v], v 2 8V
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Non-adjacent level addition

• dd > 1
• Edge creates new shortest

paths
• Changes to Sdag (new

distances)
• Algorithm only sketched

(most details missing)

Figure 3. Insertion of edge e = (u, v) connects two vertices that are not adjacent to each other in the BFS tree of root s. In the simplest case only one
vertex is moved (pulled up), v. For other scenarios an entire subtree moves as can be seen in (b).
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(b) After edge insertion. v has moved closer to the root of the tree. Consequently,
additional vertices might be pulled up.

Figure 4. Insertion of the edge e = (u, v) connects two connected components. The BFS tree of s is connected to vertex u and is not connected to vertex
v.
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(b) After edge insertion. Note the all the shortest paths between vertices in the
two connected components go through e.

Figure 3. Insertion of edge e = (u, v) connects two vertices that are not adjacent to each other in the BFS tree of root s. In the simplest case only one
vertex is moved (pulled up), v. For other scenarios an entire subtree moves as can be seen in (b).
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(b) After edge insertion. v has moved closer to the root of the tree. Consequently,
additional vertices might be pulled up.

Figure 4. Insertion of the edge e = (u, v) connects two connected components. The BFS tree of s is connected to vertex u and is not connected to vertex
v.

d=1

d=2

d=i

s

v

u

d=i+1

Connected Component 1 Connected Component 2

(a) Before edge insertion.

d=1

d=2

d=i

s

v

u
e ve

d=i+1

(b) After edge insertion. Note the all the shortest paths between vertices in the
two connected components go through e.
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Complexity

• Time: O(n2 + nm) ← same as Brandes’
• In practice, algorithm is much faster

• Space: O(n2 + nm) ← higher than Brandes’
• For each source, a Sdag of complexity n + m
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Results
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(a) Speedup of the streaming algorithm for Erdös-Rènyi sparse graphs.
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(b) Speedup of the streaming algorithm for R-MAT sparse graphs.

Figure 5. Speedup of the new streaming algorithm versus doing a full recompute for sparse synthetic graphs.
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(a) Speedup of the streaming algorithm for Erdös-Rènyi dense graphs.
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(b) Speedup of the streaming algorithm for R-MAT dense graphs.

Figure 6. Speedup of the new streaming algorithm versus doing a full recompute for dense synthetic graphs.

considerable as those for ER graphs, it is worth noting that
R-MAT graphs have a different structure than ER and in many
cases are more challenging. Also, the variance in the speedups
between the different edge factors is significantly smaller for
R-MAT graphs.

For both ER and R-MAT graphs we measure the perfor-
mance for dense graph insertions as well. We use graphs with
density of 5% to 90% with intervals of 5%. The speedups
can be seen in Figure IV. Initially when the graphs are still
relatively sparse, the speedup of the new algorithm gradually
increases. At some point, the graph becomes better connected
such that more edges need to be traversed for both the BFS
and the dependency accumulation. From this point onwards,
the speedups gradually decrease. However, the densification

offers an additional benefit - the effective(average) diameter
decreases. The benefit from this is that for many of the
trees, no re-computation is needed as the newly inserted edge
connects vertices that are in the same level. For both the ER
graphs in Figure IV (a) and the R-MAT graphs in Figure IV
(b), when the graph density goes above 55%-60% the speedups
come down. However, the speedups stay in the 2-digit region
of 12X � 18X .

B. Real graph

For real social networks, we used five collaboration net-
works supplied by Leskovc et al. [18] and his software [1].
Using terminology defined in [18], the effective diameter is
defined as the 90th percentile distance of all the vertices.

The networks that were used are collaboration networks for

Speedup over Brandes’ on synthetic graphs (n = 4096)
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Conclusions

• Up to 2 orders of magnitude speedup
• Super-quadratic space bottleneck
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QUBE: a Quick algorithm for
Updating BEtweenness centrality

M. Lee, J. Lee, J. Park, R. Choi, C. Chung

WWW ’12: International World Wide Web Conference
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Intuition

• No need to update all vertices when a new edge is added
• Prune vertices whose b does not change
• Large reduction in all-pairs shortest paths to be re-computed
• Support both edge additions and removals
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Minimum Cycle Basis

• G = (V ,E ) undirected graph
• Cycle C ⊆ E s.t. ∀v ∈ V , v incident to even number of edges

in C
• Represented as edge incidence vector ν ∈ {0, 1}|E |, where
ν(e) = 1 ⇐⇒ e ∈ C

• Cycle Basis = set of linearly independent cycles
• Minimum Cycle Basis = on weighted graph with non-negative

weights we , cycle basis of minimum total weight
w(C) =

∑
i w(Ci ) where w(Ci ) =

∑
e∈Ci

we
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Minimum Cycle Basis Example

• Three cycle basis sets: {C1,C2}, {C1,C3}, {C2,C3}
• If all edges have same weight we = 1, MCB = {C1,C2}

The betweenness centrality can be computed as follows:

1. For each pair of vertices (vs and vt), compute the
shortest paths between the two vertices.

2. For each pair of vertices, compute the ratio of the par-
ticipation of each vertex in the shortest path(s). The
ratio is the number of shortest paths between vs and vt

that go through vj divided by the number of shortest
paths between vs and vt.

3. Accumulate the ratio for all pairs of vertices.

Let us consider updating the betweenness centrality caused
by a graph update. Even a simple update, for example in-
serting an edge to a graph, could change existing shortest
paths for many pairs of vertices in the graph. One of the
biggest drawbacks in updating the betweenness centrality
using the previous algorithms is that the shortest paths for
all pairs of vertices are recomputed whenever an update oc-
curs in a graph.

3.2 Minimum Cycle Basis

Definition 2 (Cycle Basis). Let a graph G = (V, E) be an
undirected graph. A cycle C is a subset of edges such that
every vertex of V is incident to an even number of edges in
C. Each cycle C can be represented by an edge incidence
vector in {0, 1}|E| where a component is equal to 1 precisely
when e ∈ C. A maximal set of linearly independent cycles
is called a cycle basis.

Definition 3 (Minimum Cycle Basis (MCB)). Let a graph
G = (V, E) be an undirected connected graph with a non-
negative weight we assigned to each edge e ∈ E. Minimum
Cycle Basis is a cycle basis C of minimum total weight,
i.e., which minimizes w(C) =

∑v
i=1 w(Ci), where w(Ci) =∑

e∈Ci
we.

v3

v4

v5

v1

v2

c1
c2

c3

Figure 2: An example of a cycle basis and the min-
imum cycle basis

The example depicted in Figure 2 has three cycle basis sets
{C1, C2}, {C1, C3}, and {C2, C3}. If every edge in the graph
has the same weight (i.e., 1 for all edges), MCB is {C1, C2}.
The detailed definitions of cycle basis and minimum cycle
basis can be found in [16].

3.3 Overall Process
The overall flow of the proposed betweenness centrality

update algorithm is as follows. First, we identify the set
of vertices whose betweenness centralities can be changed,
and the set(s) of vertices whose betweenness centralities do
not change. Through the analysis of possible changes in the
betweenness centrality that can occur as a result of graph
updates, we discovered the characteristics of the sets of ver-
tices in which the changes in the betweenness centralities

do and do not occur. Observed pattern is applicable for
any type of connected graphs. Theoretical evidence on the
generalization is presented in Section 5.1.

Next, we perform the betweenness centrality computation
on the identified sets of vertices whose betweenness central-
ities can be changed. We refer to the computed values as
the local betweenness centrality. On top of the local be-
tweenness centrality, we perform additional calculations on
the vertices whose shortest paths are not yet considered.
Details are presented in Section 5. Through simple addi-
tional calculations, the exact betweenness centrality can be
restored without performing an expensive computation on
all the vertices on a graph, such as the calculation of all pair
shortest paths.

4. MINIMUM UNION CYCLE
In this section we introduce the concept of the minimum

union cycle (MUC) upon which our update algorithm is
built. As explained in the previous section, a set of ver-
tices whose betweenness centralities can be changed is dis-
tinguished from the set(s) of vertices whose betweenness cen-
tralities do not change. Such sets are identified by using
MUCs obtained during the preprocessing time. The initial
set of MUCs is found and stored during the preprocessing
time. As changes occur in a graph, stored MUCs also need
to be changed. Changes in MUCs are managed during the
runtime. In Sections 4.2 and 4.3, we explain how to find
MUCs and how to update MUCs.

4.1 Definition of MUC

Definition 4 (Minimum Union Cycle (MUC)). Given a
minimum cycle basis C and minimum cycles Ci ∈ C, let
VCi be the set of vertices in Ci. Recursively union two VCis
together if they share at least one common vertex. Then
each final set of vertices forms a MUC.

Each vertex appears in only one MUC since MUCs are
disjoint sets. We denote MUC(v) as MUC which contains
vertex v.

Definition 5 (Connection vertex). Vertex v ∈ MUC is a
connection vertex, if v is an articulation vertex1 and v has
an edge to a vertex w /∈ MUC(v).

In Figure 5, let us assume that an edge (v3, v4) is inserted.
MUC(v3) is {v1, v2, v3, v4}, and the connection vertices of
MUC(v3) are v1, v2 and v3.

The deletion of a connection vertex makes the graph dis-
connected since the connection vertex is also an articula-
tion vertex. We denote a graph that is disconnected from
MUC(vi) as a result of the deletion of a connection vertex
vi as a disconnected subgraph Gi. In Figure 5, G1, G2, and
G3 are disconnected subgraphs generated from the deletion
of connection vertex v1, v2, and v3, respectively.

4.2 Finding MUCs
In this subsection, we present how to generate MUCs, a

set of connection vertices for each MUC and disconnected
subgraphs derived from the deletion of connection vertices.

1A vertex a is called an articulation vertex if the deletion
of a with its incident edges from G makes the graph discon-
nected. Equivalently, there must exist two vertices v and w
such that every path from v to w goes through an articula-
tion vertex a.

WWW 2012 – Session: Community Detection in Social Networks April 16–20, 2012, Lyon, France
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Minimum Union Cycle

• Given a MCB C and minimum cycles Ci ∈ C
• Let VCi be the set of vertices induced by Ci

• Recursively union two VCi if they share at least one vertex
• The final set of vertices is a Minimum Union Cycle MUC

• MUCs are disjoint sets of vertices
• MUC(v) = the MUC which contains vertex v
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Connection Vertex

• Articulation Vertex = vertex v whose deletion makes the
graph disconnected

• Biconnected graph = graph with no articulation vertex
• Vertex v is an articulation vertex ⇐⇒ v belongs to two

biconnected components

• Connection Vertex = vertex v that
• is an articulation vertex
• has an edge to vertex w 6∈ MUC(v)
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Connection Vertex Example

• If (v3, v4) is added,
MUC(v3) = {v1, v2, v3, v4}

• v1, v2, v3 are connection
vertices of MUC(v3)

• Let Gi be the disconnected
subgraph generated by
removing vi

(b) No change, after the deletion, if there still exists
more than one path between the two vertices and
does not exist a vertex appearing in all the paths
between the two vertices. In Figure 3(b), the dele-
tion of edge(b) does not affect any MUCs (Line
20 in Algorithm 2).

(c) An existing MUC is split into MUC(s) and ver-
tex(s), after the deletion, if there still exists more
than one path between two vertices and exists
a vertex appearing in all paths between the two
vertices. In Figure 3(b), the deletion of edge(c)
induces the separation of MUC into two MUCs
(Line 18 in Algorithm 2).

5. UPDATING BETWEENNESS
CENTRALITY

In this section, we describe how to compute the between-
ness centrality values. As mentioned in Section 4, after an
insertion or deletion of the edge e(vi, vj), we guarantee that
the betweenness centralities of vertices in MUC(vi) can be
changed. Therefore, after we find the reduced set of vertices,
which we refer to as MUC, we need to efficiently calculate
and update the betweenness centralities of the vertices in
the MUC to which the updated vertices belong. From now
on, we simply denote such MUC as MUCU .

v1

v3

v2

v4 v5

G
G’ G G’

c(v1) 1 0.5

c(v2) 1 0.5

c(v3) 0.5 0.5

c(v4) 3.5 0.5

c(v5) 0

Figure 4: An example of the dependency of the be-
tweenness centrality

Recomputing betweenness centralities of the vertices in a
graph every time an update occurs is expensive, because in
general, the recomputation involves computation of all pair
shortest paths in the graph. In the previous section, we
proposed a way to find a set of vertices whose betweenness
centralities can be changed. This set of vertices is referred
to as MUCU . Yet, calculating the betweenness centrality
using only the vertices in MUCU is insufficient. In fact, the
betweenness centralities calculated using only the vertices
in MUCU are always smaller than the betweenness central-
ities calculated using all the vertices in a graph. This is
because, (1) the shortest paths whose source or target is
not in MUCU , and (2) the shortest paths that pass though
MUCU and both the source and the target of the shortest
paths are not in MUCU , are not yet considered. For ex-
ample, Figure 4 shows the betweenness centralities of the
vertices in G, and a subgraph of G, G′. The betweenness
centralities of vertices calculated using only the vertices in
G′ are smaller than the values calculated using the vertices
in G. This is because, the paths from v5 to each vertex in
G′ are missing.

Based on this idea, we now explain how to restore the
exact betweenness centrality by considering the vertices in
MUCU only. Let us refer to the betweenness centrality cal-
culated using only the vertices in MUCU as the local be-
tweenness centrality and the betweenness centrality calcu-

lated using the entire vertices in the graph as the global
betweenness centrality.

5.1 Betweenness Centrality Update Theorem
Before we introduce our technique, we define some ter-

minologies for a better understanding. cMUC (vi) denotes
the local betweenness centrality of a vertex vi calculated us-
ing the vertices in MUCU only. ci represents a connection
vertex. ςρ(vi, vj) is the set of vertices in the shortest paths
between vi and vj , and SP (vi, vj) is the set of shortest paths
between vi and vj . Therefore, |SP (vi, vj)| is the number of
the shortest paths between vi and vj . For example, in Fig-
ure 4, |SP (v1, v5)| = 1, |SP (v1, v2)| = 2, and ςρ(v1, v2) is
{v1, v2, v3, v4}.

Gj represents a disconnected subgraph originated from a
deletion of the connection vertex, cj . Gl

j represents the lth
connected component of Gj . VGj is the set of vertices of
Gj . In Figure 5, G1, G2 and G3 represent disconnected sub-
graphs originated from the deletions of connection vertices,
v1, v2, and v3, respectively. G1

2 and G2
2 are connected com-

ponents of G2. If the dotted edge is inserted, MUCU is
{v1, v2, v3, v4} and connection vertices of MUCU to G1, G2,
and G3 are v1, v2, and v3, respectively.

v1

v3

v2

v4

MUCU

v5

v6

v7v8

|VG1
|=5

|VG3
|=6

|VG2
|=4

G1

G2

G3

G2
1 G2

2|VG2
|=31 |VG2

|=12

Figure 5: An example of updating the betweenness
centrality (vertices in G1 and G3 are omitted.)

Lemma 1. Let vs ∈ VGj , vt ∈ MUCU and cj be a con-
nection vertex which connects MUCU with Gj . Then each
vertex in ςρ(cj , vt) must be included in a ςρ(vs, vt).

Proof: Since a connection vertex in MUCU is also an ar-
ticulation vertex, all paths from vs ∈ VGj to vt ∈ MUCU go
through a connection vertex cj . Therefore ςρ(vs, vt) always
includes ςρ(cj , vt).✷

Lemma 1 allows us to calculate the increase of the be-
tweenness centrality due to the shortest paths whose source
or target is not in MUCU (the shortest paths between the
vertices in MUCU and the vertices not in MUCU ). Such
increase of the betweenness centrality for vi is denoted as
cbj (vi).

cbj (vi) =

⎧
⎪⎨
⎪⎩

|VGj
|

|SP (vs,vt)| if vi in ςρ(cj , vt) − {vt}

0 otherwise

(2)

where vs in VGj , vt ∈ MUCU , cj is a connection vertex to
Gj .
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Finding MUCs

• Finding an MCB is well studied
• Kavitha, Mehlhorn, Michail, Paluch. “A faster algorithm for

minimum cycle basis of graphs”. ICALP 2004
• Finding MUC from MCB relatively straightforward (just union

sets of vertices)
• Also find connection vertices for each MUC
• All done as a preprocessing step
• Need to be updated at runtime



85/200

Updating MUCs – Addition

Algorithm 1: FindMUC(C)

input : C - minimum cycle basis
1 begin
2 MUCSet := A minimum cycle basis C;
3 while ∃ ci, cj ∈MUCSet, where ci and cj share at

least one common vertex do
4 ci := ci union cj ;
5 Remove cj from MUCSet ;

6 for each MUC ∈MUCSet do
7 Conn(MUC) := a set of connection vertices in MUC

;
8 for each connection vertex vi ∈ Conn(MUC) do
9 Gi := disconnected subgraphs originated from

the deletion of a connection vertex vi ;

Algorithm 1 uses a minimum cycle basis C as an input,
and it finds a set of MUCs (MUCSet), and a set of connec-
tion vertices with corresponding subgraphs.

The calculation of a minimum cycle basis is well studied in
the field of graph theory, and many efficient algorithms, such
as Horton’s algorithms [14] and Kavitha’s algorithm [16], ex-
ist. In line 2, we calculate a minimum cycle basis using an
existing algorithm. In line 3-line 5, the algorithm finds a set
of MUCs (MUCSet) by unioning the cycles in a minimum
cycle basis until the unioned cycles are disjoint from each
other. A set of connection vertices for each MUC and dis-
connected subgraphs derived from the deletion of connection
vertices are found in line 7-line 9.

Note that Algorithm 1 is performed during the prepro-
cessing time. However, the MUC updating algorithm (Al-
gorithm 2) needs to be processed during the runtime. MUC
updating algorithm for an insertion and deletion of an edge
is presented in the following subsection.

4.3 Updating MUCs
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v12
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v4 v7

v6

v5

v8
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v11

a

bc

(b) Deletion

Figure 3: An example of updating MUC

We now present our technique on maintaining a set of
MUCs, a set of connection vertices for each MUC and dis-
connected subgraphs derived from the deletion of a connec-

Algorithm 2: UpdateMUC(vi, vj , MUCSet, G)

input : vi - a vertex in inserted/deleted edge
vj - a vertex in inserted/deleted edge
MUCSet - a set of MUCs
G - an original graph

1 begin
// if vi is not contained any MUC, MUC(vi)

returns vi only
2 if Insertion Operation then
3 if MUC(vi) = MUC(vj) then
4 // Do Nothing

5 else
6 NewMUC := Let be an empty set;
7 for each vertices v in ςρ(vi, vj) in G do
8 NewMUC := NewMUC ∪MUC(v) ;
9 remove MUC(v) from MUCSet ;

10 add NewMUC to MUCSet ;

11 add edge (vi, vj) to graph G;

12 else
13 delete edge (vi, vj) from graph G;
14 if 1 = |Path(vi, vj)| in G then
15 remove MUC(vi) from MUCSet ;

16 else
17 if ∃v in all Path(vi, vj) then
18 split MUC(v) into MUCs;

19 else
20 // Do Nothing

tion vertex. We explain each case of updating MUCs accord-
ing to the insertion or deletion of an edge as follow (Initial
MUCs in Figure 3(a) are {v1, v2, v3, v4, v5} and {v8, v9, v10}.
Initial MUCs in Figure 3(b) are {v1, v2, v3, v4, v5 , v6, v7}
and {v8, v9, v10}.):

1. When an edge is inserted

(a) No change, if the new edge connects two ver-
tices in one MUC. In Figure 3(a), the insertion
of edge(a) does not affect any MUCs (Line 4 in
Algorithm 2).

(b) A new MUC is created, if vertices in an exist-
ing shortest path between two vertices in the new
edge are not included in any MUC. In Figure 3(a),
the insertion of edge(b) induces a creation of a
new MUC consisting of {v6, v7, v12} (Line 6-Line
10 in Algorithm 2. ςρ(vi, vj) is the set of vertices
in shortest paths between vi and vj).

(c) MUC is merged with the vertices and other MUCs
to create a new MUC, if vertices in existing short-
est paths between two vertices of the new edge
are included in some MUCs. In Figure 3(a), the
insertion of edge(c) induces MUC(v10) to merge
with v11 (Line 6-Line 10 in Algorithm 2).

2. When an edge is deleted

(a) MUC is destroyed, if there exists only one path
between two vertices in the deleted edge as a re-
sult of the deletion. In Figure 3(b), the deletion
of edge(a) causes the destruction of MUC(v10)
(Line 14-Line 15 in Algorithm 2. Path(vi, vj) is
the set of paths between vi and vj .).
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• Adding a does not affect the MUC (endpoints in the same
MUC)

• Adding b creates a new MUC (endpoints do not belong to a
MUC)

• Adding c merges two MUCs (merge MUCs of vertices on the
S between endpoints)
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Updating MUCs – Removal

Algorithm 1: FindMUC(C)

input : C - minimum cycle basis
1 begin
2 MUCSet := A minimum cycle basis C;
3 while ∃ ci, cj ∈MUCSet, where ci and cj share at

least one common vertex do
4 ci := ci union cj ;
5 Remove cj from MUCSet ;

6 for each MUC ∈MUCSet do
7 Conn(MUC) := a set of connection vertices in MUC

;
8 for each connection vertex vi ∈ Conn(MUC) do
9 Gi := disconnected subgraphs originated from

the deletion of a connection vertex vi ;

Algorithm 1 uses a minimum cycle basis C as an input,
and it finds a set of MUCs (MUCSet), and a set of connec-
tion vertices with corresponding subgraphs.

The calculation of a minimum cycle basis is well studied in
the field of graph theory, and many efficient algorithms, such
as Horton’s algorithms [14] and Kavitha’s algorithm [16], ex-
ist. In line 2, we calculate a minimum cycle basis using an
existing algorithm. In line 3-line 5, the algorithm finds a set
of MUCs (MUCSet) by unioning the cycles in a minimum
cycle basis until the unioned cycles are disjoint from each
other. A set of connection vertices for each MUC and dis-
connected subgraphs derived from the deletion of connection
vertices are found in line 7-line 9.

Note that Algorithm 1 is performed during the prepro-
cessing time. However, the MUC updating algorithm (Al-
gorithm 2) needs to be processed during the runtime. MUC
updating algorithm for an insertion and deletion of an edge
is presented in the following subsection.

4.3 Updating MUCs
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Figure 3: An example of updating MUC

We now present our technique on maintaining a set of
MUCs, a set of connection vertices for each MUC and dis-
connected subgraphs derived from the deletion of a connec-

Algorithm 2: UpdateMUC(vi, vj , MUCSet, G)

input : vi - a vertex in inserted/deleted edge
vj - a vertex in inserted/deleted edge
MUCSet - a set of MUCs
G - an original graph

1 begin
// if vi is not contained any MUC, MUC(vi)

returns vi only
2 if Insertion Operation then
3 if MUC(vi) = MUC(vj) then
4 // Do Nothing

5 else
6 NewMUC := Let be an empty set;
7 for each vertices v in ςρ(vi, vj) in G do
8 NewMUC := NewMUC ∪MUC(v) ;
9 remove MUC(v) from MUCSet ;

10 add NewMUC to MUCSet ;

11 add edge (vi, vj) to graph G;

12 else
13 delete edge (vi, vj) from graph G;
14 if 1 = |Path(vi, vj)| in G then
15 remove MUC(vi) from MUCSet ;

16 else
17 if ∃v in all Path(vi, vj) then
18 split MUC(v) into MUCs;

19 else
20 // Do Nothing

tion vertex. We explain each case of updating MUCs accord-
ing to the insertion or deletion of an edge as follow (Initial
MUCs in Figure 3(a) are {v1, v2, v3, v4, v5} and {v8, v9, v10}.
Initial MUCs in Figure 3(b) are {v1, v2, v3, v4, v5 , v6, v7}
and {v8, v9, v10}.):

1. When an edge is inserted

(a) No change, if the new edge connects two ver-
tices in one MUC. In Figure 3(a), the insertion
of edge(a) does not affect any MUCs (Line 4 in
Algorithm 2).

(b) A new MUC is created, if vertices in an exist-
ing shortest path between two vertices in the new
edge are not included in any MUC. In Figure 3(a),
the insertion of edge(b) induces a creation of a
new MUC consisting of {v6, v7, v12} (Line 6-Line
10 in Algorithm 2. ςρ(vi, vj) is the set of vertices
in shortest paths between vi and vj).

(c) MUC is merged with the vertices and other MUCs
to create a new MUC, if vertices in existing short-
est paths between two vertices of the new edge
are included in some MUCs. In Figure 3(a), the
insertion of edge(c) induces MUC(v10) to merge
with v11 (Line 6-Line 10 in Algorithm 2).

2. When an edge is deleted

(a) MUC is destroyed, if there exists only one path
between two vertices in the deleted edge as a re-
sult of the deletion. In Figure 3(b), the deletion
of edge(a) causes the destruction of MUC(v10)
(Line 14-Line 15 in Algorithm 2. Path(vi, vj) is
the set of paths between vi and vj .).
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• Removing a destroys the MUC (cycle is removed → no
biconnected component)

• Removing b does not affect the MUC (MUC is still
biconnected)

• Removing c splits the MUC in two (single vertex appears in
all S between endpoints)
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Betweenness Centrality Dependency

• Only vertexes inside the MUCs of the updated endpoints need
to be updated

• However, recomputing all centralities for the MUC still
requires new shortest paths to the rest of the graph

• Shortest paths to vertices outside the MUC
• Shortest paths that pass through the MUC

(b) No change, after the deletion, if there still exists
more than one path between the two vertices and
does not exist a vertex appearing in all the paths
between the two vertices. In Figure 3(b), the dele-
tion of edge(b) does not affect any MUCs (Line
20 in Algorithm 2).

(c) An existing MUC is split into MUC(s) and ver-
tex(s), after the deletion, if there still exists more
than one path between two vertices and exists
a vertex appearing in all paths between the two
vertices. In Figure 3(b), the deletion of edge(c)
induces the separation of MUC into two MUCs
(Line 18 in Algorithm 2).

5. UPDATING BETWEENNESS
CENTRALITY

In this section, we describe how to compute the between-
ness centrality values. As mentioned in Section 4, after an
insertion or deletion of the edge e(vi, vj), we guarantee that
the betweenness centralities of vertices in MUC(vi) can be
changed. Therefore, after we find the reduced set of vertices,
which we refer to as MUC, we need to efficiently calculate
and update the betweenness centralities of the vertices in
the MUC to which the updated vertices belong. From now
on, we simply denote such MUC as MUCU .

v1

v3

v2

v4 v5

G
G’ G G’

c(v1) 1 0.5

c(v2) 1 0.5

c(v3) 0.5 0.5

c(v4) 3.5 0.5

c(v5) 0

Figure 4: An example of the dependency of the be-
tweenness centrality

Recomputing betweenness centralities of the vertices in a
graph every time an update occurs is expensive, because in
general, the recomputation involves computation of all pair
shortest paths in the graph. In the previous section, we
proposed a way to find a set of vertices whose betweenness
centralities can be changed. This set of vertices is referred
to as MUCU . Yet, calculating the betweenness centrality
using only the vertices in MUCU is insufficient. In fact, the
betweenness centralities calculated using only the vertices
in MUCU are always smaller than the betweenness central-
ities calculated using all the vertices in a graph. This is
because, (1) the shortest paths whose source or target is
not in MUCU , and (2) the shortest paths that pass though
MUCU and both the source and the target of the shortest
paths are not in MUCU , are not yet considered. For ex-
ample, Figure 4 shows the betweenness centralities of the
vertices in G, and a subgraph of G, G′. The betweenness
centralities of vertices calculated using only the vertices in
G′ are smaller than the values calculated using the vertices
in G. This is because, the paths from v5 to each vertex in
G′ are missing.

Based on this idea, we now explain how to restore the
exact betweenness centrality by considering the vertices in
MUCU only. Let us refer to the betweenness centrality cal-
culated using only the vertices in MUCU as the local be-
tweenness centrality and the betweenness centrality calcu-

lated using the entire vertices in the graph as the global
betweenness centrality.

5.1 Betweenness Centrality Update Theorem
Before we introduce our technique, we define some ter-

minologies for a better understanding. cMUC (vi) denotes
the local betweenness centrality of a vertex vi calculated us-
ing the vertices in MUCU only. ci represents a connection
vertex. ςρ(vi, vj) is the set of vertices in the shortest paths
between vi and vj , and SP (vi, vj) is the set of shortest paths
between vi and vj . Therefore, |SP (vi, vj)| is the number of
the shortest paths between vi and vj . For example, in Fig-
ure 4, |SP (v1, v5)| = 1, |SP (v1, v2)| = 2, and ςρ(v1, v2) is
{v1, v2, v3, v4}.

Gj represents a disconnected subgraph originated from a
deletion of the connection vertex, cj . Gl

j represents the lth
connected component of Gj . VGj is the set of vertices of
Gj . In Figure 5, G1, G2 and G3 represent disconnected sub-
graphs originated from the deletions of connection vertices,
v1, v2, and v3, respectively. G1

2 and G2
2 are connected com-

ponents of G2. If the dotted edge is inserted, MUCU is
{v1, v2, v3, v4} and connection vertices of MUCU to G1, G2,
and G3 are v1, v2, and v3, respectively.
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v5

v6

v7v8

|VG1
|=5
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|=6

|VG2
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1 G2

2|VG2
|=31 |VG2

|=12

Figure 5: An example of updating the betweenness
centrality (vertices in G1 and G3 are omitted.)

Lemma 1. Let vs ∈ VGj , vt ∈ MUCU and cj be a con-
nection vertex which connects MUCU with Gj . Then each
vertex in ςρ(cj , vt) must be included in a ςρ(vs, vt).

Proof: Since a connection vertex in MUCU is also an ar-
ticulation vertex, all paths from vs ∈ VGj to vt ∈ MUCU go
through a connection vertex cj . Therefore ςρ(vs, vt) always
includes ςρ(cj , vt).✷

Lemma 1 allows us to calculate the increase of the be-
tweenness centrality due to the shortest paths whose source
or target is not in MUCU (the shortest paths between the
vertices in MUCU and the vertices not in MUCU ). Such
increase of the betweenness centrality for vi is denoted as
cbj (vi).

cbj (vi) =

⎧
⎪⎨
⎪⎩

|VGj
|

|SP (vs,vt)| if vi in ςρ(cj , vt) − {vt}

0 otherwise

(2)

where vs in VGj , vt ∈ MUCU , cj is a connection vertex to
Gj .

WWW 2012 – Session: Community Detection in Social Networks April 16–20, 2012, Lyon, France

356

   '    '



88/200

Betweenness Centrality outside the MUC

• Let s ∈ VGj , t ∈ MUC ,
• Let j ∈ MUC be a connection vertex to subgraph Gj

• Each vertex in Sjt is also in Sst

• Therefore, betweenness centrality due to vertices outside the
MUC :

bo(v) =
{ |VGj |

σst
if v ∈ {Sjt \ t}

0 otherwise
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Betweenness Centrality trough the MUC

• Let s ∈ VGj , t ∈ VGk ,
• Let j ∈ MUC be a connection vertex to subgraph Gj

• Let k ∈ MUC be a connection vertex to subgraph Gk

• Each vertex in Sjk is also in Sst

• Therefore, betweenness centrality due to paths through the
MUC :

bx (v) =
{ |VGj ||VGk |

σst
if v ∈ Sjk

0 otherwise

More caveats apply for subgraphs that are disconnected, as every
path that connects vertices in different connected component
passes through v
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Updating Betweenness Centrality

b(v) = bMUC(v) +
∑

Gj⊂G
bo(v) +

∑

Gj ,Gk⊂G
bx(v)
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QUBE algorithm

Lemma 2. Let vs ∈ VGj , vt ∈ VGk , and cj and ck be con-
nection vertices which connect MUCU with Gj , and MUCU

with Gk, respectively. Then each vertex in ςρ(cj , ck) must
be included in a ςρ(vs, vt).

Proof: Since cj and ck are articulation vertices, all paths
from vs ∈ VGj to vt ∈ VGk go through connection vertices
cj and ck. Therefore ςρ(vs, vt) always includes ςρ(cj , ck).✷

Lemma 2 allows us to calculate the increase of the be-
tweenness centrality due to the shortest paths that pass
through MUCU and whose source and target are both not
in MUCU . Such increase of the betweenness centrality for
vi is denoted as ctk

j
(vi).

ctk
j
(vi) =

⎧
⎪⎨
⎪⎩

|VGj
|·|VGk

|
|SP (vs,vt)| if vi in ςρ(cj , ck)

0 otherwise

(3)

where vs ∈ VGj , vt ∈ VGk , cj and ck are connection vertices
to Gj and Gk, respectively.

In the case where Gi is disconnected, all shortest paths be-
tween the two vertices from different connected components
of Gi always pass through vi. For example, in Figure 5, a
shortest path from vs ∈ G1

2 to vt ∈ G2
2 must pass through

v2. Such an increase of the betweenness centrality for vi is
denoted as cti(vi) and calculated as follows:

cti(vi) =

⎧
⎨
⎩

|VGi |2 − ∑n
l=1(|VGl

i
|2) if Gi is disconnected

0 otherwise
(4)

where Gl
j is the lth connected component of Gi, n is the

number of connected components in Gi, and vi is the con-
nection vertex to Gi.

Theorem 1. (Betweenness Centrality Update Theorem) By
Lemma 1 and Lemma 2, we can compute the betweenness
centrality of a vertex vi, c(vi).

c(vi)=cMUC (vi)+
∑

Gj⊂G

cbj (vi)+
∑

Gj,Gk⊂G,j ̸=k

ctk
j
(vi)+

∑

Gi⊂G

cti(vi)

(5)
where cbi(vi) is from Equation 2 (Lemma 1) and ctk

j
(vi), cti(vi)

are from Equation 3 and 4 (Lemma 2).

By Theorem 1, we can compute the global betweenness
centrality using the local betweenness centrality and the
number of vertices in each disconnected subgraph Gi with-
out performing all pair shortest paths computation on the
all the vertices in a graph.

5.2 Betweenness Centrality Update Algorithm
(QUBE)

Algorithm 3 shows how to update betweenness centrality
only using vertices in MUCU that updated vertices belong
to. Algorithm 3 uses MUCU as an input and calculates the
updated betweenness centrality (C[vi]) as an output. The
set of all pair shortest paths in MUCU and the local be-
tweenness centralities of vertices in MUCU are calculated
using the existing betweenness centrality algorithms (Line

Algorithm 3: QUBE(MUCU )

input : MUCU - Minimum Union Cycle that updated
vertices belong to

output : C[vi] - Updated Betweenness Centrality Array
1 begin
2 Let SP be the set of all pair shortest paths in MUCU ;
3 Let C[vi] be an empty array, vi ∈MUCU ;
4 SP , C[vi] ← Betweenness() ;
5 for each shortest path <va, . . . , vb> in SP do
6 if va is a connecting vertex then
7 Ga := Subgraph connected by a connection

vertex va ;
8 for each vi ∈ <va, . . . , vb> - {vb} do

9 C[vi] := C[vi] +
|VGa |

|SP (va,vb)| ;

10 if vb is also a connecting vertex then
11 Gb := Subgraph connected by a

connection vertex vb ;
12 for each vi ∈ < va, . . . , vb > do

13 C[vi] := C[vi] +
|VGa |·|VGb

|
|SP (va,vb)| ;

14 if Ga is disconnected then
15 C[va] := C[va] + |VGa |2 −∑n

l=1(|VGl
a
|2)

4)2. Then for each shortest path between the vertices in
MUCU (Line 5), add the increase of betweenness central-
ity values due to the shortest paths between the vertices
in MUCU and the vertices in other subgraphs (Line 9), as
well as the shortest paths between the vertices in two other
subgraphs, which pass through MUCU (Line 13) and the
shortest paths between the two vertices from different con-
nected components of a subgraph (Line 15). Note that it
does not require additional costs to obtain SP , the set of all
pair shortest paths in MUCU , since all pair shortest paths
are already calculated when we compute the local between-
ness centrality and can be easily obtained.

Example 1. Table 5.2 shows the values computed using
Equation 2, Equation 3, and Equation 4 for the vertices in
MUCU depicted in Figure 5. Due to the space limitation,
we do not differentiate a path from vs to vt and a path from
vt to vs in this example. Therefore, the actual between-
ness centralities are twice as big as the values shown in this
example. For vertex v2, the local betweenness centrality,
cMUC (v2), is 0. And there are four shortest paths (v2-v3-
v1, v2-v4-v1, v2-v3, v2-v4) which start from v2. Therefore,
we add ‘|VG1 | = 4’ 2 times for the paths v2-v3 and v2-v4.
Since |SP (v2, v1)| = 2, we add ‘|VG1 |/2 = 2’ 2 times to v2’s
betweenness centrality for the paths v2-v3-v1 and v2-v4-v1.

Also, v1-v3-v2, v1-v4-v2 are shortest paths which include
v2 and connect G1 and G2 via v1 and v2. Therefore, we add
a half of the product of the numbers of vertices in G1 and
G2, which is ‘|VG1 | · |VG2 |/2 = 5 · 4/2’ for each path. The
path v2-v3 connects G2 and G3 via v2 and v3. Similar to the
above case, we add ‘|VG2 | · |VG3 | = 4 · 6’ to v2’s betweenness
centrality. G2 is a disconnected graph and v2 is a connection
vertex to G2. Therefore, we add the product of the numbers
of vertices in G1

2 and G2
2, which is 3 · 1. Finally, we get 59

2Algorithm 3 can use any existing betweenness centrality
algorithm. For the implementation of Algorithm 3, we use
the Brandes’ algorithm which is the fastest known algorithm
so far. Our implementation is explained in Section 6.1
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QUBE algorithm

Lemma 2. Let vs ∈ VGj , vt ∈ VGk , and cj and ck be con-
nection vertices which connect MUCU with Gj , and MUCU

with Gk, respectively. Then each vertex in ςρ(cj , ck) must
be included in a ςρ(vs, vt).

Proof: Since cj and ck are articulation vertices, all paths
from vs ∈ VGj to vt ∈ VGk go through connection vertices
cj and ck. Therefore ςρ(vs, vt) always includes ςρ(cj , ck).✷

Lemma 2 allows us to calculate the increase of the be-
tweenness centrality due to the shortest paths that pass
through MUCU and whose source and target are both not
in MUCU . Such increase of the betweenness centrality for
vi is denoted as ctk

j
(vi).

ctk
j
(vi) =

⎧
⎪⎨
⎪⎩

|VGj
|·|VGk

|
|SP (vs,vt)| if vi in ςρ(cj , ck)

0 otherwise

(3)

where vs ∈ VGj , vt ∈ VGk , cj and ck are connection vertices
to Gj and Gk, respectively.

In the case where Gi is disconnected, all shortest paths be-
tween the two vertices from different connected components
of Gi always pass through vi. For example, in Figure 5, a
shortest path from vs ∈ G1

2 to vt ∈ G2
2 must pass through

v2. Such an increase of the betweenness centrality for vi is
denoted as cti(vi) and calculated as follows:

cti(vi) =

⎧
⎨
⎩

|VGi |2 − ∑n
l=1(|VGl

i
|2) if Gi is disconnected

0 otherwise
(4)

where Gl
j is the lth connected component of Gi, n is the

number of connected components in Gi, and vi is the con-
nection vertex to Gi.

Theorem 1. (Betweenness Centrality Update Theorem) By
Lemma 1 and Lemma 2, we can compute the betweenness
centrality of a vertex vi, c(vi).

c(vi)=cMUC (vi)+
∑

Gj⊂G

cbj (vi)+
∑

Gj,Gk⊂G,j ̸=k

ctk
j
(vi)+

∑

Gi⊂G

cti(vi)

(5)
where cbi(vi) is from Equation 2 (Lemma 1) and ctk

j
(vi), cti(vi)

are from Equation 3 and 4 (Lemma 2).

By Theorem 1, we can compute the global betweenness
centrality using the local betweenness centrality and the
number of vertices in each disconnected subgraph Gi with-
out performing all pair shortest paths computation on the
all the vertices in a graph.

5.2 Betweenness Centrality Update Algorithm
(QUBE)

Algorithm 3 shows how to update betweenness centrality
only using vertices in MUCU that updated vertices belong
to. Algorithm 3 uses MUCU as an input and calculates the
updated betweenness centrality (C[vi]) as an output. The
set of all pair shortest paths in MUCU and the local be-
tweenness centralities of vertices in MUCU are calculated
using the existing betweenness centrality algorithms (Line

Algorithm 3: QUBE(MUCU )

input : MUCU - Minimum Union Cycle that updated
vertices belong to

output : C[vi] - Updated Betweenness Centrality Array
1 begin
2 Let SP be the set of all pair shortest paths in MUCU ;
3 Let C[vi] be an empty array, vi ∈MUCU ;
4 SP , C[vi] ← Betweenness() ;
5 for each shortest path <va, . . . , vb> in SP do
6 if va is a connecting vertex then
7 Ga := Subgraph connected by a connection

vertex va ;
8 for each vi ∈ <va, . . . , vb> - {vb} do

9 C[vi] := C[vi] +
|VGa |

|SP (va,vb)| ;

10 if vb is also a connecting vertex then
11 Gb := Subgraph connected by a

connection vertex vb ;
12 for each vi ∈ < va, . . . , vb > do

13 C[vi] := C[vi] +
|VGa |·|VGb

|
|SP (va,vb)| ;

14 if Ga is disconnected then
15 C[va] := C[va] + |VGa |2 −∑n

l=1(|VGl
a
|2)

4)2. Then for each shortest path between the vertices in
MUCU (Line 5), add the increase of betweenness central-
ity values due to the shortest paths between the vertices
in MUCU and the vertices in other subgraphs (Line 9), as
well as the shortest paths between the vertices in two other
subgraphs, which pass through MUCU (Line 13) and the
shortest paths between the two vertices from different con-
nected components of a subgraph (Line 15). Note that it
does not require additional costs to obtain SP , the set of all
pair shortest paths in MUCU , since all pair shortest paths
are already calculated when we compute the local between-
ness centrality and can be easily obtained.

Example 1. Table 5.2 shows the values computed using
Equation 2, Equation 3, and Equation 4 for the vertices in
MUCU depicted in Figure 5. Due to the space limitation,
we do not differentiate a path from vs to vt and a path from
vt to vs in this example. Therefore, the actual between-
ness centralities are twice as big as the values shown in this
example. For vertex v2, the local betweenness centrality,
cMUC (v2), is 0. And there are four shortest paths (v2-v3-
v1, v2-v4-v1, v2-v3, v2-v4) which start from v2. Therefore,
we add ‘|VG1 | = 4’ 2 times for the paths v2-v3 and v2-v4.
Since |SP (v2, v1)| = 2, we add ‘|VG1 |/2 = 2’ 2 times to v2’s
betweenness centrality for the paths v2-v3-v1 and v2-v4-v1.

Also, v1-v3-v2, v1-v4-v2 are shortest paths which include
v2 and connect G1 and G2 via v1 and v2. Therefore, we add
a half of the product of the numbers of vertices in G1 and
G2, which is ‘|VG1 | · |VG2 |/2 = 5 · 4/2’ for each path. The
path v2-v3 connects G2 and G3 via v2 and v3. Similar to the
above case, we add ‘|VG2 | · |VG3 | = 4 · 6’ to v2’s betweenness
centrality. G2 is a disconnected graph and v2 is a connection
vertex to G2. Therefore, we add the product of the numbers
of vertices in G1

2 and G2
2, which is 3 · 1. Finally, we get 59

2Algorithm 3 can use any existing betweenness centrality
algorithm. For the implementation of Algorithm 3, we use
the Brandes’ algorithm which is the fastest known algorithm
so far. Our implementation is explained in Section 6.1
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QUBE + Brandes

• QUBE is a pruning rule that reduces the search space for
betweenness recomputation

• Can be paired with any existing betweenness algorithm to
compute bMUC

• In the experiments, Brandes’ is used
• Quantities computed by Brandes’ (e.g., σ) reused by QUBE

for bo and bx
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Results
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Figure 6: The betweenness centrality update time on the synthetic data

Algorithm 4: QUBE-BRANDES(MUCU)

input : MUCU - Minimum Union Cycle that an updated
vertices belong to
SGs - A set of disconnected subgraphs connected

by each connection vertices in MUCU

output : C[vi] - Updated Betweenness Centrality Array
1 begin
2 for vs ∈MUCU do
3 S ← empty stack ;
4 P [vi] ← empty list, for all vi ∈MUCU ;
5 σ[vi] := 0, for all vi ∈MUCU ; σ[vs] := 1 ;
6 σt[vi] := 0 for all vi ∈MUCU ; d[vs] := 0 ;

7 d[vi] := -1, for all vi ∈MUCU ; d[vs] := 0 ;
8 Q ← empty queue ;
9 enqueue vs → Q ;

10 while Q not empty do
11 dequeue vi ← Q ;
12 push vi → S ;
13 for each neighbor vn of vi do
14 if d[vn] < 0 then
15 enqueue vn → Q ;
16 d[vn] := d[vi] + 1 ;

17 if d[vn] = d[vi] + 1 then
18 σ[vn] := σ[vn] + σ[vi] ;
19 append vi → P [vn] ;

20 δ[vi] := 0, for all vi ∈MUCU ;
21 while S not empty do
22 pop vn ← S ;
23 if vs, vn are connection vertices and vn ̸= vs

then
24 ct := |VGs | · |VGn | ;

25 σt[vn] := σt[vn] + ct ;

26 C[vn] := C[vn] + ct ;

27 for vp in P [vn] do

28 δ[vp] := δ[vp] +
σ[vp]

σ[vn]
· (1 + δ[vn]) ;

29 if vs is connection vertex then

30 σt[vp] := σt[vp] + σt[vn] · σ[vp]

σ[vn]
;

31 C[vp] := C[vp] + σt[vn] · σ[vp]

σ[vn]
;

32 if vn ̸= vs then
33 C[vn] := C[vn] + δ[vn] ;

34 if vs is connection vertex then
35 C[vn] := C[vn] + δ[vn] · |VGs | · 2;

36 for Gi ∈ SGs do
37 if Gi is disconnected then
38 C[vi] := C[vi] + |VGi

|2 −∑n
l=1(|VGl

i
|2) ;

Table 2: The speed-up on real data
Name Type |V| |E| Avg.

Prop.
Speed-
up

Eva[24] Ownership 4457 4562 6.41 2418.17
Erdos02a Collaboration 5534 8472 28.66 39.57
Erdos972a Collaboration 4680 7030 30.00 34.39
Pgp[4] Social 4680 24316 42.14 13.09

Epab Web link 4253 8897 52.25 6.67
Contact c Social 11604 65441 62.60 4.00
Wikivote[19] Trust 7066 100736 67.73 3.00
CAGrQc[19] Collaboration 4158 13422 77.92 2.06

ahttp://vlado.fmf.uni-lj.si/pub/networks/data
bhttp://www.cs.cornell.edu/courses/cs685/2002fa/
chttp://stuff.metafilter.com/infodump/

Eva Erdos02 Erdos972 Pgp Epa Contact Wikivote CAGrQc

QUBE+Brandes 106 12289 8640 270419 34056 1150801 361362 101895

Brandes 256326 486267 297100 3538417 227158 4600805 1082843 210831

1

10

100

1000

10000

100000

1000000

10000000

Ti
m

e 
(m

s,
 lo

g 
sc

al
e)

Figure 7: The betweenness centrality update time
on real data

up in Table 2 shows how fast the updatable version of the
Brandes’ algorithm is compared to the original Brandes’ al-
gorithm. Table 2 clearly shows that the performance of the
updatable version of the Brandes’ algorithm increases as the
proportion decreases. Figure 7 shows the average between-
ness centrality update times measured on real graphs. Note
that we use a log scale for the y-axis in Figure 7. To rep-
resent the precise update time, a table is included in Figure
7. QUBE makes the original Brandes’ algorithm perform
about 2 times faster on ‘CAGrQc’ dataset whose proportion
is about 77 and perform about 2418 times faster on ‘Eva’
dataset whose proportion is about 6. When the proportion
is about 30, QUBE makes the original Brandes’ algorithm
perform about 37 times faster and when the proportion is
about 70, QUBE makes the original Brandes’ algorithm per-
form about 3 times faster.
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Update time as a function of the percentage of vertices of the graph in
the updated MUC for synthetic Erdös-Rényi graphs (n = 5000)
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Figure 6: The betweenness centrality update time on the synthetic data

Algorithm 4: QUBE-BRANDES(MUCU)

input : MUCU - Minimum Union Cycle that an updated
vertices belong to
SGs - A set of disconnected subgraphs connected

by each connection vertices in MUCU

output : C[vi] - Updated Betweenness Centrality Array
1 begin
2 for vs ∈MUCU do
3 S ← empty stack ;
4 P [vi] ← empty list, for all vi ∈MUCU ;
5 σ[vi] := 0, for all vi ∈MUCU ; σ[vs] := 1 ;
6 σt[vi] := 0 for all vi ∈MUCU ; d[vs] := 0 ;

7 d[vi] := -1, for all vi ∈MUCU ; d[vs] := 0 ;
8 Q ← empty queue ;
9 enqueue vs → Q ;

10 while Q not empty do
11 dequeue vi ← Q ;
12 push vi → S ;
13 for each neighbor vn of vi do
14 if d[vn] < 0 then
15 enqueue vn → Q ;
16 d[vn] := d[vi] + 1 ;

17 if d[vn] = d[vi] + 1 then
18 σ[vn] := σ[vn] + σ[vi] ;
19 append vi → P [vn] ;

20 δ[vi] := 0, for all vi ∈MUCU ;
21 while S not empty do
22 pop vn ← S ;
23 if vs, vn are connection vertices and vn ̸= vs

then
24 ct := |VGs | · |VGn | ;

25 σt[vn] := σt[vn] + ct ;

26 C[vn] := C[vn] + ct ;

27 for vp in P [vn] do

28 δ[vp] := δ[vp] +
σ[vp]

σ[vn]
· (1 + δ[vn]) ;

29 if vs is connection vertex then

30 σt[vp] := σt[vp] + σt[vn] · σ[vp]

σ[vn]
;

31 C[vp] := C[vp] + σt[vn] · σ[vp]

σ[vn]
;

32 if vn ̸= vs then
33 C[vn] := C[vn] + δ[vn] ;

34 if vs is connection vertex then
35 C[vn] := C[vn] + δ[vn] · |VGs | · 2;

36 for Gi ∈ SGs do
37 if Gi is disconnected then
38 C[vi] := C[vi] + |VGi

|2 −∑n
l=1(|VGl

i
|2) ;

Table 2: The speed-up on real data
Name Type |V| |E| Avg.

Prop.
Speed-
up

Eva[24] Ownership 4457 4562 6.41 2418.17
Erdos02a Collaboration 5534 8472 28.66 39.57
Erdos972a Collaboration 4680 7030 30.00 34.39
Pgp[4] Social 4680 24316 42.14 13.09

Epab Web link 4253 8897 52.25 6.67
Contact c Social 11604 65441 62.60 4.00
Wikivote[19] Trust 7066 100736 67.73 3.00
CAGrQc[19] Collaboration 4158 13422 77.92 2.06

ahttp://vlado.fmf.uni-lj.si/pub/networks/data
bhttp://www.cs.cornell.edu/courses/cs685/2002fa/
chttp://stuff.metafilter.com/infodump/
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Figure 7: The betweenness centrality update time
on real data

up in Table 2 shows how fast the updatable version of the
Brandes’ algorithm is compared to the original Brandes’ al-
gorithm. Table 2 clearly shows that the performance of the
updatable version of the Brandes’ algorithm increases as the
proportion decreases. Figure 7 shows the average between-
ness centrality update times measured on real graphs. Note
that we use a log scale for the y-axis in Figure 7. To rep-
resent the precise update time, a table is included in Figure
7. QUBE makes the original Brandes’ algorithm perform
about 2 times faster on ‘CAGrQc’ dataset whose proportion
is about 77 and perform about 2418 times faster on ‘Eva’
dataset whose proportion is about 6. When the proportion
is about 30, QUBE makes the original Brandes’ algorithm
perform about 37 times faster and when the proportion is
about 70, QUBE makes the original Brandes’ algorithm per-
form about 3 times faster.

WWW 2012 – Session: Community Detection in Social Networks April 16–20, 2012, Lyon, France

359

• Improvement depends highly on structure of the graph
(bi-connectedness)

• From 2 orders of magnitude (best) to 2 times (worst) faster
than Brandes’
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Intuition

• Extend an existing dynamic all-pairs shortest path algorithm
to betweenness

• G. Ramalingam and T. Reps, “On the Computational
Complexity of Incremental Algorithms,” CS, Univ. of
Wisconsin at Madison, Tech. Report 1991

• Relevant quantities: number of shortest paths σ, distances d ,
predecessors P

• Keep a copy of the old quantities while updating
• Support only edge addition (on weighted graphs)
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Edge update

• Compute new shortest paths from updated endpoints (u, v)
• If a new shortest path of the same length is found, updated

number of paths as

σst = σst + σsu × σvt

• If a new shorter shortest path to any vertex is found, update
d , clear σ

• Betweenness decreased if new shortest path found
• Edge betweenness updates backtrack via DFS over Ps(t)

b(w) = b(w)− σsw × σwt/σst
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Edge update

• Complex bookkeeping: need to consider all affected vertices
which have new alternative shortest paths of equal length (not
covered in the original algorithm)

• Amend P during update propagation → concurrent changes
to the Sdag

• Need to track now-unreachable vertices separately

• After having fixed d , σ, b, increase b due to new paths
• Update needed ∀s, t ∈ V affected by changes (tracked from

previous phase)
• Betweenness increase analogous to above decrease
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Results

obtained speedup. The performance benefits of the 
incremental betweenness algorithm increase with the 
increasing network size. When the average betweenness 
values are considered, the difference across different 
topologies is very large. This is because in preferential 
attachment networks, there are fewer nodes that are on the 
shortest paths of many other nodes than in other network 
topologies. Hence, when there is a network update, there are 
fewer nodes whose betweenness values should be adjusted. 
Another factor is the average and maximum of the shortest 
path lengths (i.e. average path length and diameter). When the 
average distances are low, fewer nodes lie on the shortest 
paths which also results in tracking of fewer predecessors 
when there is need for reconstructing the shortest paths. 

TABLE 3 - NETWORK STATISTICS. 

Topo
logy Size Max Btw 

Avg. 
Btw 

Std. 
Dev. 
Btw 

Dia
me
ter 

Avg 
Path 
Length 

Clust 
Coef 

PF 1000 1953.97 94.37 177.47 10 3.45 0.014 
PF 3000 5183.26 197.59 434.828 14 4.126 0.007 
PF 5000 12987.22 292.48 749.003 16 4.442 0.005 
ER 1000 25429.36 4777.28 4249.81 15 6.305 0.003 
ER 3000 76713.80 18136.7 10087.4 14 7.086 0.001 
ER 5000 108061.5 32073.4 16062.9 14 7.492 0.001 
SW 1000 12401.46 2685.67 2255.69 33 7.612 0.044 
SW 3000 82585.03 11296.2 10401.4 55 10.33 0.039 
SW 5000 147015.4 21003.3 20449.2 71 11.93 0.039 

 
TABLE 4 - PERFORMANCE BENEFITS AND NETWORK STATISTICS OBTAINED ON 

SMALL WORLD NETWORKS (1000 NODES, AVERAGE DEGREE = 6). 

p 

 
Speed
up 

 
Affect 
% Max 

Btw 
Avg. 
Btw 

Std. 
Dev. 
Btw 

Dia
me
ter 

Avg 
Path 
Len 

Clust 
Coef 

0.2 1.36 47.78 34020 4305 3104 35 9.71 0.154 
0.4 9.97 36.47 15036 3183 2395 30 8.02 0.071 
0.6 18.3 28.00 14763 2268 2463 31 7.79 0.024 
0.8 67.3 13.06 6779 833 1162 22 6.44 0.005 
1.0 72.2 2.23 1026 100 144 12 3.86 0.003 

In addition, small world networks have different 
topological characteristics and performance values depending 
on the rewiring probability, p, chosen. We perform a sweep of 
p values covering the range of 0.2 - 1.0 with a step size of 0.2 
on 1000-node networks, with an average degree of 6. As 
shown in Table 4, with the increasing rewiring probability, 
clustering coefficient, diameter, and the characteristic path 
length reduce. This reflects as a reduction in the average of 
unscaled betweenness values along with an increase in the 
speedup obtained using the incremental betweenness 
algorithm similar to the results presented in Table 1 and Table 
3. In addition, the speedup obtained over repeated invocations 
of Brandes’ algorithm increases with the reducing percentage 
of affected nodes, in line with the results presented earlier. 
C. Real Life Networks  

Next, we evaluate the performance of our algorithm using 
a number of real life networks that are of different magnitudes 
and that grow incrementally over time. The networks used in 
our evaluations are prepared as weighted networks where the 
cost of an edge is inversely proportional to the strength of 
relationship. We consolidate multiple updates for the same 
pair of nodes in a single edge. For instance, if an interaction 
between two nodes x and y has been recorded twice up to a 
certain point, then the edge x → y has the cost of 1/2. When a 
third update is recorded between x and y, then the cost of the 

edge x → y is updated to be 1/3. We first describe the datasets 
we have used, and then compare the performance of our 
incremental betweenness update algorithm against the best-
performing non-incremental betweenness algorithm (Brandes’ 
algorithm [5]). We use four different real life networks: 
SocioPatterns (communication between conference attendees) 
[20], Facebook-like (online-forum communication between 
students) [21], HEP Co-Authorship Network (coauthorship 
relations between High-Energy Physics researchers) [22], and 
P2P Communication Network (P2P file sharing) [23]. 

TABLE 5- PERFORMANCE OF INCREMENTAL BETWEENNESS ALGORITHM ON 
REAL LIFE NETWORKS. 

Network 
 
D? 

 
#(N) #(E) 

Avg 
Speedup Affect% 

SocioPatterns U 113 4392 9.58 x 38.26% 
FB-like D 1896 20289 18.48 x 27.67% 
HEP Coauthor U 7507 19398 357.96 x 42.08% 
P2P Comm. D 6843 7572 36732 x 0.02% 

 
TABLE 6- NETWORK STATISTICS COLLECTED ON REAL LIFE NETWORKS. 

 
 
Network Max Btw Avg. Btw 

Std. 
Dev. 
Btw 

Diam
eter 

Avg. 
Path 
Len. 

Clus 
Coef 

SocioPatterns 423.477 36.752 51.139 3 1.65 0.53 
FB-like 146171.2 2848.62 9753.8 8 3.19 0.08 
HEP Coauthor 820318.2 13553.29 38024 15 5.74 0.46 
P2P Comm 1515.99 0.3298 18.870 3 1.24 0 
For evaluating the performance of our incremental 

betweenness update algorithm, we first compute the 
betweenness centrality values for each network modeling all 
but 100 interactions. Then, we incrementally update the 
network and record the average speedup obtained over 
Brandes’ algorithm. Table 5 presents the performance 
improvements obtained along with basic information on the 
networks, while Table 6 lists additional information about 
other topological properties of the networks. 

The results presented in Table 5 and Table 6 suggest that 
the incremental betweenness update algorithm can obtain 
substantial performance benefits, but these benefits vary with 
the network topology. The avg. speedup column in Table 5 
describes the speedup obtained over Brandes’ algorithm 
averaged across 100 updates on the network. For instance, for 
a single update the incremental betweenness algorithm is 9.58 
times faster on average than invoking Brandes algorithm for 
the same update; resulting in 958x faster cumulative execution 
time for a sequence of 100 updates. 

The performance benefits improve with the increasing 
network size and decreasing characteristic path length, 
diameter, and average betweenness as shown in Table 5 and 
Table 6. For instance, on the HEP co-authorship network, 
there are several close-knit groups and it is a relatively more 
connected network than the P2P communication network, 
where only a  few users act as servers for the other users 
providing them with files to download. Hence, in the P2P 
communication network, very few nodes can lie on the 
shortest paths between other nodes. Consequently, when a 
network update occurs, few shortest paths tend to be changed, 
and thus few betweenness values are affected, resulting in a 
dramatic average speedup per each update (36732x) over 
Brandes’ algorithm. The rightmost column of Table 5 shows 
the percentage across the entire set of nodes that were 
affected. In undirected (bidirectional) networks, the 
percentage of affected nodes tends to be higher as each 
inserted edge causes the network update to propagate in 
multiple directions. 
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Speedup over Brandes’ on real-world graphs

• Speedup depends on topological characteristics (e.g.,
diameter, clust. coeff.)
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Comparison with QUBE

D. Comparison with QuBE Algorithm [11] 
The idea of the QuBE algorithm depends on estimating the 

nodes whose betweenness values might change due to an 
update in a network while avoiding computation of all-pairs 
shortest paths. In contrast, our algorithm depends on dynamic 
maintenance of all-pairs shortest paths and the related 
auxiliary data. The QuBE algorithm covers edge 
insertions/deletions, leaving out node insertions for growing 
networks and edge cost modifications for weighted network 
types. In contrast, our algorithm supports node/edge insertion 
and edge cost modifications for the weighted networks.  

Providing support for weighted networks makes the 
algorithm more complex. For example, assume that there is a 
path from x to y. Then, with a network update an edge from 
node x to y is inserted into the network. In binary networks, it 
is obvious that no path between x and y can be smaller than a 
direct edge between x and y, and several changes on the 
shortest paths can be maintained by considering the number of 
hops. However, in weighted networks, when an edge from x to 
y is inserted, it is still necessary to check the paths of 
equivalent length before ruling out all previously known 
shortest paths between x and y. 

TABLE 7- PERFORMANCE COMPARISON OF QUBE AND OUR PROPOSED 
ALGORITHM. 

 
Network Type  #(Node)  #(Edge) QuBE 

Incremental 
Betweenness 

Eva [24] Ownership  4457 4562 2418.17 25425.87 
CAGrQc [25] Collaboration  4158 13422 2.06 67.86 

We compare our algorithm against the QuBE algorithm 
using the datasets the authors used in their paper [11]. We 
select two of their datasets: the dataset on which QuBE 
performs the best (Eva), and the dataset on which QuBE 
performs the lowest (CAGrQc). Table 7 reports the average 
performance results for 100 random updates on the networks. 
For purposes of fair comparison, the updates included 
shrinking network updates as well, which were handled by an 
incremental shrinking network update algorithm we have 
under development and excluded due to space reasons. Both 
QuBE and our algorithm are compared against the Brandes’ 
algorithm as baseline. Our algorithm performs 10-30 times 
better than the QuBE algorithm while providing substantial 
improvements over Brandes’ algorithm. Additional analyses 
of speedup and memory consumption are presented in [26]. 

V. CONCLUSION 
This paper proposes an incremental betweenness algorithm 

that performs dynamic maintenance of betweenness values in 
the cases of a new edge/node insertion and/or edge cost 
decrease. The goal is to avoid re-computations involved in the 
analysis of dynamic social networks and reflect changes 
triggered by a network update as efficiently as possible. The 
approach in this paper has already been extended to other 
types of centrality measures and to networks that grow and 
shrink over time [27]. While the underlying behavior of 
incremental all-pairs shortest path computation has been 
studied, the memory and computation required to extend the 
shortest path algorithm to a particular centrality metric can 
result in significantly different scaling of computation time 
and memory requirements with network size and type. Our 
performance results indicate substantial performance 
improvements over the state of the art including non-

incremental and dynamic update algorithms on realistic social 
network data. 
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APPENDIX 
Algorithm-1: INSERTEDGE (src, dest, cost)  
1. σold ! [ ]; Dold !!![ ]; trackLost !!![ ]; PairsDone = [ ] 
2. C (src, dest) ← cost 
3. Sinks      !!INSERTUPDATE (dest, src, src, PairsDone) 
4. Sources  ! INSERTUPDATE (src, dest, dest, PairsDone) 
5. for s ! Sinks 
6.      INSERTUPDATE (src, dest, s, PairsDone) 
7. for s ! Sources 
8.      INSERTUPDATE (dest, src, s, PairsDone) 
9. INCREASEBETWEENNESS( ) 
 
Algorithm-2: INSERTUPDATE (src, dest, z, PairsDone) 
1. Workset ← {src → dest}  
2. VisitedVertices    ← {src}   
3. AffectedVertices  ← ! 
4. while Workset ≠ ! 
5. {x → y} ← pop (Workset) 
6. alt ← C (x, y) + D (y, z) 
7. if alt  < D (x, z) 
8. if <x, z>! σold 9. Dold (x, z) ← D (x, z);  σold(x, z)   ← σ(x, z); 
10. REDUCEBETWEENNESS (x, z); 
11. σ(x, z)   ← 0;   Clear !!!!!; 12. if [u, z] ! PairsDone 
13. Remove [x, z] from PairsDone 
14. D (x, z) ← alt  
15. if alt == D (x, z) and D (x, z) ≠ ∞ 
16. if [x, z] !!PairsDone 
17. if <x, z>! σold 18. REDUCEBETWEENNESS (x, z); 
19. if σ (x, z)≠ 0 
20. σold (x, z) ← σ (x, z) 
21. σ (x, z) ← σ (x, z) + (σ (x, src) * 1 * σ (dest, z)) 
22. Append x to !!!!! and !!!!! to !!!!! 23. Insert [x, z] into PairsDone 
24. Insert x into AffectedVertices 
25. for u ! Pred (x) sorted w.r.t. edge costs in asc. order 
26. if SP (u, x, src) = 1 && u ! VisitedVertices  
27. push {u → x} into Workset 
28. Insert u into VisitedVertices 
29. return AffectedVertices 
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Speedup over Brandes’ in comparison with QUBE

• Datasets from the QUBE paper
• About 1 order of magnitude faster than QUBE



102/200

Betweenness Centrality – Incremental
and Faster

M. Nasre, M. Pontecorvi, V. Ramachandran

MFCS ’14: Mathematical Foundations of Computer Science
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Intuition

• Keep Sdag for each vertex
• Re-use information from Sdag of updated edge endpoints
• Adding new edges will not make old edges part of a S
• Support only edge addition (on weighted graphs)
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Main Result

• Let E ∗ =
⋃

e∈S
e ⊆ E be the set of edges that are part of any

shortest path
• Let m∗ = |E ∗| and ν∗ = max

v∈V
|Sdagv | the maximum number

of edges in shortest paths through any single vertex v
• n < ν∗ < m∗ < m
• After incremental update, betweenness can be recomputed in

• O(ν∗n) time using O(ν∗n) space
• O(m∗n) time using O(n2) space

• Bounded by O(mn + n2)
• Logarithmic factor better than Brandes’ (on weighted graphs)
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Lemma 1

• Edge (u, v) 6∈ Sxu ∧ (u, v) 6∈ Svx as edge weights are positive
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Lemma 2

• Updates to σ and d in constant time
• Need to update P to complete Sdag update
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Sdag Update

582 M. Nasre, M. Pontecorvi, and V. Ramachandran

considers edges in DAG(s) (Steps 3–5) and edges in DAG(v) (Steps 6–8), and
for each edge (a, b) in either DAG, it decides whether to include it in H based
on the value of flag(s, b). For the updated edge (u, v) there is a separate check
(Steps 9–10). The algorithm clearly takes time linear in the size of DAG(s) and
DAG(v), i.e., O(ν∗) time.

Algorithm 3. Update-DAG(s,w′(u, v))

Input: DAG(s), DAG(v), and flag(s, t), ∀t ∈ V .
Output: An edge set H after decrease of weight on edge (u, v), and P ′

s(t),∀t ∈ V −{s}.
1: H ← ∅.
2: for each v ∈ V do P ′

s(v) = ∅.
3: for each edge (a, b) ∈ DAG(s) and (a, b) ̸= (u, v) do
4: if flag(s, b) = UN-changed or flag(s, b) = NUM-changed then
5: H ← H ∪ {(a, b)} and P ′

s(b) ← P ′
s(b) ∪ {a}.

6: for each edge (a, b) ∈ DAG(v) do
7: if flag(s, b) = NUM-changed or flag(s, b) = WT-changed then
8: H ← H ∪ {(a, b)} and P ′

s(b) ← P ′
s(b) ∪ {a}.

9: if flag(s, v) = NUM-changed or flag(s, v) = WT-changed then
10: H ← H ∪ {(u, v)} and P ′

s(v) ← P ′
s(v) ∪ {u}.

Lemma 3. Let H be the set of edges output by Alg. 3. An edge (a, b) ∈ H if
and only if (a, b) ∈ DAG′(s).

Proof. Since the update is an incremental update on edge (u, v), we note that
for any b, a shortest path π′

sb from s to b in G′ can be of two types:
(i) π′

sb is a shortest path in G. Therefore every edge on such a path is present in
DAG(s) and each such edge is added to H in Steps 3–5 of Alg. 3.
(ii) π′

sb is not a shortest path in G. However, since π′
sb is a shortest path in G′,

therefore π′
sb is of the form s ! u → v ! b. Since shortest paths from s to u

in G and G′ are unchanged (by Lemma 1), the edges in the sub-path s ! u are
present in DAG(s) and are added to H in Steps 3–5 of Alg. 3. Finally, shortest
paths from v to any b in G and G′ remain unchanged. Thus, the edges in the
sub-path v ! b are present in DAG(v) and are added to H in Steps 6–8 of Alg. 3.

For the other direction, if the edge (a, b) is added to H by Step 5, this implies
that the edge (a, b) ∈ DAG(s). Thus, there exists a shortest path πsb = s !
a → b in G. We execute Step 5 when flag(s, b) = UN-changed or flag(s, b) =
NUM-changed. Thus every shortest path from s to b in G is also shortest path in
G′. Therefore, (a, b) ∈ DAG′(s). If the edge (a, b) is added to H by Step 8, then
the edge (a, b) ∈ DAG(v). Thus, there exists a shortest path πvb = v ! a → b in
G. Since decreasing the weight of the edge (u, v) does not change shortest paths
from v to any other vertex, πvb is in G′. We execute Step 8 when flag(s, b) =
NUM-changed or flag(s, b) = WT-changed. Therefore, there exists at least one
shortest path from s to b in G′ that uses the updated edge (u, v). Hence the path
π′

sb = π′
su ·(u, v) ·πvb is shortest in G′, and this establishes that (a, b) ∈ DAG′(s).

Finally, edge (u, v) is added to H by Step 10 only if flag(s, v) is NUM-changed
or WT-changed, and in either case, there is at least a new shortest path from s
to v through (u, v). Hence (u, v) ∈ DAG′(s). ⊓$

• UN-changed → dd = 0
• NUM-changed → dd = 1
• WT-changed → dd > 1
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Edge Update

Betweenness Centrality – Incremental and Faster 583

3.2 Updating Betweenness Centrality Scores

The algorithm for updating the BC scores after an edge update (Alg. 4) is similar
to Alg. 1, but with the following changes: an extended Step 1 also computes, for
every s, t pair, the updated d′(s, t) and σ′

st, as well as flag(s, t). Using Lemma 2,
we spend constant time for each s, t pair, hence O(n2) time for all pairs. In
Step 3, instead of Dijkstra’s algorithm, we run Alg. 3 to obtain the updated
predecessor lists P ′

s(t), for all s, t. This step requires time O(ν∗) for a source
s, and O(ν∗ · n) over all sources. The last difference is in Step 4: we place in
the stack S the vertices in reverse topological order in DAG′(s), instead of non-
increasing distance from s. This requires time linear in the size of the updated
DAG. Thus the time complexity of Edge-Update is O(ν∗ · n).

Algorithm 4. Edge-Update(G = (V, E),w′(u, v))

Input: updated edge with w′(u, v), d(s, t) and σst, ∀ s, t ∈ V ; DAG(s),∀ s ∈ V .
Output: BC′(v), ∀ v ∈ V ; d′(s, t) and σ′

st ∀ s, t ∈ V ; DAG′(s), ∀ s ∈ V .
1: for every v ∈ V do BC′(v) ← 0.

for every s, t ∈ V do compute d′(s, t), σ′
st, flag(s, t). // use Lemma 2

2: for every s ∈ V do
3: Update-DAG(s, (u, v)). // use Alg. 3
4: Stack S ← vertices in V in a reverse topological order in DAG′(s).
5: Accumulate-dependency(s,S). // use Alg. 2

Undirected Graphs. For an undirected G, we construct the corresponding di-
rected graph GD in which every undirected edge is replaced with 2 directed edges.
An incremental update on an undirected edge (u, v) is equivalent to two edge
updates on (u, v) and (v, u) in GD. Thus, Theorem 1 holds for undirected graphs.

Space Efficient Implementation. In order to obtain O(n2) space complexity,
we do not store the SSSP DAGs rooted at every source. Instead, we only store
the edge set E∗. After an incremental update on edge (u, v) we first construct
the updated set E′∗ in O(m∗ · n) time as follows. For each edge (a, b) ∈ E∗, if
d′(s, b) = d(s, a) + w(a, b) for some source s ∈ V , then (a, b) ∈ E′∗. Using the
updated E′∗ we can construct DAG′(s) in O(m∗) time, by using the fact that
an edge (a, b) ∈ E′∗ belongs to DAG′(s) iff d(s, b) = d(s, a) + w(a, b). Since the
construction of each updated DAG takes O(m∗) time and there are n DAGs
to be constructed, the O(m∗ · n) time complexity follows. The space used is
O(m∗ + n2) to store E∗ and d(s, t), σst, for all s, t ∈ V .

4 Incremental Vertex Update

We now consider an incremental update to a vertex v in G = (V, E), which allows
an incremental edge update on any subset of edges incoming to and outgoing
from v. In this algorithm, we use the graph G and the graph GR = (V, ER),
which is obtained by reversing every edge in G, i.e., (a, b) ∈ ER iff (b, a) ∈ E.
Thus, for every s ∈ V , we also maintain DAGR(s), the SSSP DAG rooted at s
in GR. We will obtain the same time bound as in Section 3.
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Space-Efficient Variant O(n2)

• Do not store the Sdag
• Store only E ∗
• Updated Sdag can be build in O(m∗) time

• Time O(m∗ n)
• Compute E ′∗ from E∗, then Sdag′s from E ′∗

• Space O(m∗ + n2) to store E ∗ and n2 distances d(s, t) and
shortest paths σst
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Comparison

580 M. Nasre, M. Pontecorvi, and V. Ramachandran

Algorithm 2. Accumulate-dependency(s, S) (from [3])

Input: For every t ∈ V : σst, Ps(t).
A stack S containing v ∈ V in a suitable order (non-increasing d(s, v) in [3]).

1: for every v ∈ V do δs•(v) ← 0.
2: while S ̸= ∅ do
3: w ← pop(S).
4: for v ∈ Ps(w) do δs•(v) ← δs•(v) + σsv

σsw
· (1 + δs•(w)).

5: if w ̸= s then BC(w) ← BC(w) + δs•(w).

received attention, and these results for incremental and in some cases, decre-
mental, BC are listed in the table below. All of these results except [16] deal with
unweighted graphs as opposed to our results, which are for the weighted case.
Further, while all give encouraging experimental results or match the Brandes
worst-case time complexity, none prove any worst-case improvement. As men-
tioned in the Introduction, BC is also widely used in weighted networks (see
[4,18,31,32]); however, only the heuristic in Kas et al. [16], which has no worst-
case bounds, addresses this version.

Paper Year Space Time Weights Update Type

Brandes static [3] 2001 O(m + n) O(mn) NO Static Alg.
Lee et al. [21] 2012 O(n2 + m) Heuristic NO Single Edge

Green et al. [12] 2012 O(n2 + mn) O(mn) NO Single Edge
Kourtellis+ [19] 2014 O(n2) O(mn) NO Single Edge
Singh et al. [10] 2013 – Heuristic NO Vertex update

Brandes static [3] 2001 O(m + n) O(mn + n2 log n) YES Static Alg.
Kas et al. [16] 2013 O(n2 + mn) Heuristic YES Single Edge
This paper 2014 O(ν∗ · n) O(ν∗ · n) YES Vertex Update
This paper 2014 O(n2) O(m∗ · n) YES Vertex Update

Our first algorithm, which takes time O(ν∗ · n) in a weighted graph even for
a vertex update, improves on all previous results when ν∗ = o(m). By slightly
relaxing the time complexity to O(m∗·n), we are also able to match the best space
complexity in any of the previous results, while matching their time complexities
and improving on all of them when m∗ = o(m).

3 Incremental Edge Update

In this section we present our algorithm to recompute BC scores of all vertices
in a directed graph G = (V, E) after an incremental edge update (i.e., adding an
edge or decreasing the weight of an existing edge). Let G′ = (V, E′) denote the
graph obtained after an edge update to G = (V, E). A path πst from s to t in
G has weight w(πst) =

∑
e∈πst

w(e). Let d(s, t), σst, δs•(t) and DAG(s) denote
the distance from s to t in G, the number of shortest paths from s to t in G,
the dependency of s on t and the SSSP DAG rooted at s in G respectively; let
d′(s, t), σ′

st, δ′
s•(t) and DAG′(s) denote these parameters in G′.
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Conclusions

• Provably faster than Brandes’ on weighted graphs
• However m∗ can be large in practice
• No experiments
• Hard to parallelize (need to access pairs of Sdag at a time)
• Still has main bottleneck of most algorithms: O(n2) memory
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Incremental Algorithms for Closeness
Centrality

A. E. Sarıyüce, K. Kaya, E. Saule, U. V. Çatalyürek

IEEE BigData ’13: International Conference on Big Data
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Intuition

• Algorithm with pruning based on level difference (similar to
Green et al.)

• Additional pruning by bi-connected decomposition (similar to
QUBE)

• Applied to closeness centrality (still solves APSP)
• Reminder: closeness centrality

• c(v) = 1∑

u∈V
d(u, v)
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Preliminaries
• Best static algorithm O(nm) time

there is a path between u and v. If all vertex pairs in G
are connected we say that G is connected. Otherwise, it is
disconnected and each maximal connected subgraph of G
is a connected component, or a component, of G. We use
dG(u, v) to denote the length of the shortest path between
two vertices u, v in a graph G. If u = v then dG(u, v) = 0.
If u and v are disconnected, then dG(u, v) = 1.

Given a graph G = (V, E), a vertex v 2 V is called an
articulation vertex if the graph G�v (obtained by removing
v) has more connected components than G. Similarly, an
edge e 2 E is called a bridge if G�e (obtained by removing
e from E) has more connected components than G. G is
biconnected if it is connected and it does not contain an
articulation vertex. A maximal biconnected subgraph of G
is a biconnected component.

A. Closeness Centrality

Given a graph G, the farness of a vertex u is defined as

far[u] =
X

v2V

dG(u,v) 6=1

dG(u, v).

And the closeness centrality of u is defined as

cc[u] =
1

far[u]
. (1)

If u cannot reach any vertex in the graph cc[u] = 0.
For a sparse unweighted graph G = (V, E) the

complexity of cc computation is O(n(m + n)) [2]. For
each vertex s 2 V , Algorithm 1 executes a Single-Source
Shortest Paths (SSSP), i.e., it initiates a breadth-first
search (BFS) from s, computes the distances to the other
vertices and far[s], the sum of the distances which are
different than 1. As the last step, it computes cc[s]. Since
a BFS takes O(m + n) time, and n SSSPs are required in
total, the complexity follows.

Algorithm 1: CC: Basic centrality computation
Data: G = (V, E)
Output: cc[.]

1 for each s 2 V do
.SSSP(G, s) with centrality computation
Q empty queue
d[v] 1, 8v 2 V \ {s}
Q.push(s), d[s] 0
far[s] 0
while Q is not empty do

v  Q.pop()
for all w 2 �G(v) do

if d[w] =1 then
Q.push(w)
d[w] d[v] + 1
far[s] far[s] + d[w]

cc[s] = 1
far[s]

return cc[.]

III. MAINTAINING CENTRALITY

Many real-life networks are scale free. The diameters of
these networks grow proportional to the logarithm of the
number of nodes. That is, even with hundreds of millions
of vertices, the diameter is small, and when the graph
is modified with minor updates, it tends to stay small.
Combining this with the power-law degree distribution of
scale-free networks, we obtain the spike-shaped shortest-
distance distribution as shown in Figure 2. We use work
filtering with level differences and utilization of special
vertices to exploit these observations and reduce the
centrality computation time. In addition, we apply SSSP
hybridization to speedup each SSSP computation.

0.00#
0.10#
0.20#
0.30#
0.40#
0.50#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10#11#12#13#14#15#16#17#18#19#20#

Pr
(d
(u
,v
))=

)x
))

Shortest)path)distance)

amazon0601#
soc4sign4epinions#
web4Google#
web4NotreDame#

Figure 2. The probability of the distance between two (connected)
vertices is equal to x for four social and web networks.

A. Work Filtering with Level Differences

For efficient maintenance of the closeness centrality val-
ues in case of an edge insertion/deletion, we propose a work
filter which reduces the number of SSSPs in Algorithm 1 and
the cost of each SSSP by utilizing the level differences.

Level-based filtering detects the unnecessary updates and
filter them out. Let G = (V, E) be the current graph and uv
be an edge to be inserted to G. Let G0 = (V, E [ uv) be
the updated graph. The centrality definition in (1) implies
that for a vertex s 2 V , if dG(s, t) = dG0(s, t) for all t 2 V
then cc[s] = cc0[s]. The following theorem is used to detect
such vertices and filter their SSSPs.

Theorem 1: Let G = (V, E) be a graph and u and v be
two vertices in V s.t. uv /2 E. Let G0 = (V, E [ uv). Then
cc[s] = cc0[s] if and only if |dG(s, u) � dG(s, v)|  1.

Proof: If s is disconnected from u and v, uv’s insertion
will not change cc[s]. Hence, cc[s] = cc0[s]. If s is only
connected to one of u and v in G the difference |dG(s, u)�
dG(s, v)| is 1, and cc[s] needs to be updated by using the
new, larger connected component containing s. When s is
connected to both u and v in G, we investigate the edge
insertion in three cases as shown in Figure 3:

Case 1: dG(s, u) = dG(s, v): Assume that the path s
P 

u–v
P 0
 t is a shortest s t path in G0 containing uv. Since

dG(s, u) = dG(s, v), there exists a shorter path s
P 00
 v

P 0
 t

with one less edge. Hence, 8t 2 V , dG(s, t) = dG0(s, t).
Case 2: |dG(s, u) � dG(s, v)| = 1: Let

dG(s, u) < dG(s, v). Assume that s
P u–v

P 0
 t is a shortest

path in G0 containing uv. Since dG(s, v) = dG(s, u) + 1,
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CasesFiltering*with*level*differences*

•  Upon#edge#inserAon,#breadth[first#search#tree#of#each#
vertex#will#change.#Three#possibiliAes:#

•  Case#1#and#2#will#not#change#cc#of#s!#
•  No#need#to#apply#SSSP#from#them#

•  Just#Case#3#
•  How#to#find#such#verAces?#
•  BFSs#are#executed#from#u#and#v#and#level#diff#is#checked#
#

#
#

IEEE 
BigData’13 Incremental*Algorithms*for*Closeness*Centrality* 8 

• Usual cases: dd = 0, dd = 1, dd > 1
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Pruning - level difference

there exists another path s
P 00
 v

P 0
 t with the same length.

Hence, 8t 2 V , dG(s, t) = dG0(s, t).
Case 3: |dG(s, u) � dG(s, v)| > 1: Let dG(s, u) <

dG(s, v). The path s u–v in G0 is shorter than the shortest
s  v path in G since dG(s, v) > dG(s, u) + 1. Hence,
8t 2 V \{v}, dG0(s, t)  dG(s, t) and dG0(s, v) < dG(s, v),
i.e., an update on cc[s] is necessary.

Figure 3. Three cases of edge insertion: when an edge uv is
inserted to the graph G, for each vertex s, one of them is true:
(1) dG(s, u) = dG(s, v), (2) |dG(s, u) � dG(s, v)| = 1, and (3)
|dG(s, u)� dG(s, v)| > 1.

Although Theorem 1 yields to a filter only in case of
edge insertions, the following corollary which is used for
edge deletion easily follows.

Corollary 2: Let G = (V, E) be a graph and u and v be
two vertices in V s.t. uv 2 E. Let G0 = (V, E\{uv}). Then
cc[s] = cc0[s] if and only if |dG0(s, u) � dG0(s, v)|  1.

With this corollary, the work filter can be implemented
for both edge insertions and deletions. The pseudocode of
the update algorithm in case of an edge insertion is given
in Algorithm 2. When an edge uv is inserted/deleted, to
employ the filter, we first compute the distances from u and
v to all other vertices. And, we filter the vertices satisfying
the statement of Theorem 1.

Algorithm 2: Simple work filtering
Data: G = (V, E), cc[.], uv
Output: cc0[.]
G0  (V, E [ {uv})
du[.] SSSP(G, u) . distances from u in G
dv[.] SSSP(G, v) . distances from v in G
for each s 2 V do

if |du[s]� dv[s]|  1 then
cc0[s] = cc[s]

else
. use the computation in Algorithm 1
with G0

return cc0[.]

B. Utilization of Special Vertices

We exploit some special vertices to speedup the incre-
mental closeness centrality computation further. We leverage
the articulation vertices and identical vertices in networks.
Although it has been previously shown that articulation
vertices in real social networks are limited and yield an
unbalanced shattering [17], we present the related techniques
here to give a complete view.

1) Filtering with biconnected components: Our filter can
be assisted by maintaining a biconnected component decom-
position (BCD) of G = (V, E). A BCD is a partitioning ⇧
of E where ⇧(e) is the component of each edge e 2 E.
When uv is inserted to G and G0 = (V, E0 = E [ {uv}) is
obtained, we check if

{⇧(uw) : w 2 �G(u)} \ {⇧(vw) : w 2 �G(v)}
is empty or not: if the intersection is not empty, there will be
only one element in it, cid, which is the id of the biconnected
component of G0 containing uv (otherwise ⇧ is not a valid
BCD). In this case, ⇧0(e) is set to ⇧(e) for all e 2 E and
⇧0(uv) is set to cid. If there is no biconnected component
containing both u and v , i.e., if the intersection above is
empty, we construct ⇧0 from scratch and set cid = ⇧0(uv).
⇧ can be computed in linear, O(m+n) time [6]. Hence, the
cost of BCD maintenance is negligible compared to the cost
of updating closeness centrality. Details can be found in [16].

2) Filtering with identical vertices: Our preliminary
analyses show that real-life networks can contain a
significant amount of identical vertices with the same/a
similar neighborhood structure. We investigate two types of
identical vertices.

Definition 3: In a graph G, two vertices u and v are type-
I-identical if and only if �G(u) = �G(v).

Definition 4: In a graph G, two vertices u and v are type-
II-identical if and only if {u} [ �G(u) = {v} [ �G(v).

Both types form an equivalance class relation since they
are reflexive, symmetric, and transitive. Hence, all the
classes they form are disjoint.

Let u, v 2 V be two identical vertices. One can see that
for any vertex w 2 V \ {u, v}, dG(u, w) = dG(v, w). Then
the following is true.

Corollary 5: Let I ✓ V be a vertex-class containing
type-I or type-II identical vertices. Then the closeness cen-
trality values of all the vertices in I are equal.

C. SSSP Hybridization

The spike-shaped distribution given in Figure 2 can also
be exploited for SSSP hybridization. Consider the execution
of Algorithm 1: while executing an SSSP with source s, for
each vertex pair {u, v}, u is processed before v if and only
if dG(s, u) < dG(s, v). That is, Algorithm 1 consecutively
uses the vertices with distance k to find the vertices with
distance k + 1. Hence, it visits the vertices in a top-down
manner. SSSP can also be performed in a a bottom-up
manner. That is to say, after all distance (level) k vertices
are found, the vertices whose levels are unknown can be
processed to see if they have a neighbor at level k. The top-
down variant is expected to be much cheaper for small k val-
ues. However, it can be more expensive for the upper levels
where there are much less unprocessed vertices remaining.

Following the idea of Beamer et al. [1], we hybridize the
SSSPs. While processing the nodes at an SSSP level, we
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Pruning - biconnected components•  What#if#the#graph#have#arAculaAon#points?#

•  Change#in#A#can#change#cc#of#any#vertex#in#A#and#B#
•  CompuAng#the#change#for#u#is#enough#for#finding#
changes#for#any#vertex#v#in#B#(constant#factor#is#added)#

Filtering*with*biconnected*components*

A B u 
v 

IEEE 
BigData’13 Incremental*Algorithms*for*Closeness*Centrality* 10 

• If graph has articulation points
• Change in A can change closeness of any vertex in B
• It is enough to compute change for u (constant factor is

added for the rest of B)
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Maintaining biconnected decompositionFiltering*with*biconnected*components*

•  Maintain#the#biconnected#decomposiAon#

IEEE 
BigData’13 Incremental*Algorithms*for*Closeness*Centrality* 11 

edge b-d added 

• Assume edge (b, d) added
• Similar to QUBE
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sssp hybridization

• BFS can be performed in two ways
• Top-down: process vertices at distance d to find vertices at

distance d + 1
• Bottom-up: after vertices at distance d are found, process all

unprocessed vertices to see if they are neighbors of the frontier
• Top-down is better for initial rounds, bottom-up better for

final rounds
• Hybridization: use best option at each round
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Fraction of cases

Probability*DistribuJon*

IEEE 
BigData’13 Incremental*Algorithms*for*Closeness*Centrality* 16 

algorithm for computing the closeness centrality values on
the original version of the graph. Columns 3–6 of the
table present absolute runtimes (in seconds) of the centrality
computation algorithms. The next four columns, 7–10, give
the speedups achieved by each configuration. For instance,
on the average, updating the closeness values by using CC-
B on PGPgiantcompo is 11.5 times faster than running CC.
Finally the last column gives the overhead of our algorithms
per edge insertion, i.e., the time necessary to filter the source
vertices and to maintain BCD and identical-vertex classes.
Geometric means of these times and speedups are also given
to provide a comparison across all the instances.

The times to compute the closeness values using CC on
the small graphs range between 1 to 77 seconds. On large
graphs, the times range from 13 minutes to 49 hours. Clearly,
CC is not suitable for real-time network analysis and man-
agement based on shortest paths and closeness centrality.
When all the techniques are used (CC-BLIH), the time
necessary to update the closeness centrality values of the
small graphs drops below 3 seconds per edge insertion. The
improvements range from a factor of 27.2 (cond-mat-2005)
to 111.2 (PGPgiantcompo), with an average improvement
of 43.5 across small instances and a factor of 42.6 (loc-
gowalla) to 458.8 (DBLP-coauthor), on large graphs, with
an average of 99.7. For all graphs, the time spent for
overheads is below one second which indicates that the
majority of the time is spent for SSSPs. Note that this part
is pleasingly parallel since each SSSP is independent from
each other. Hence, by combining the techniques proposed in
this work with a straightforward parallelism, one can obtain
a framework that can maintain the closeness centrality values
within a dynamic network in real time.

The overall improvement obtained by the proposed al-
gorithms is significant. The speedup obtained by using
BCDs (CC-B) are 3.5 and 3.2 on the average for small
and large graphs, respectively. The graphs PGPgiantcompo,
and wiki-Talk benefits the most from BCDs (with speedups
11.5 and 6.8, respectively). Clearly using the biconnected
component decomposition improves the update performance.
However, filtering by level differences is the most efficient
technique: CC-BL brings major improvements over CC-
B. For all social networks, when CC-BL is compared with
CC-B, the speedups range from 4.8 (web-NotreDame) to
64 (DBLP-coauthor). Overall, CC-BL brings a 7.61 times
improvement on small graphs and a 13.44 times improve-
ment on large graphs over CC.

For each added edge uv, let X be the random variable
equal to |dG(u, w)�dG(v, w)|. By using 1,000 uv edges, we
computed the probabilities of the three cases we investigated
before and give them in Fig. 4. For each graph in the
figure, the sum of the first two columns gives the ratio
of the vertices not updated by CC-BL. For the networks
in the figure, not even 20% of the vertices require an
update (Pr(X > 1)). This explains the speedup achieved

by filtering using level differences. Therefore, level filtering
is more useful for the graphs having characteristics similar
to small-world networks.

0"

0.2"

0.4"

0.6"

Pr(X"="0)"
Pr(X"="1)"
Pr(X">"1)"

Figure 4. The bars show the distribution of random variable X =
|dG(u, w) � dG(v, w)| into three cases we investigated when an
edge uv is added.

Filtering with identical vertices is not as useful as the
other two techniques in the work filter. Overall, there is a
1.15 times improvement with CC-BLI on both small and
large graphs compared to CC-BL. For some graphs, such as
web-NotreDame and web-Google, improvements are much
higher (30% and 31%, respectively).

The algorithm with the hybrid SSSP implementation, CC-
BLIH, is faster than CC-BLI by a factor of 1.42 on small
graphs and by a factor of 1.96 on large graphs. Although it
seems to improve the performance for all graphs, in some
few cases, the performance is not improved significantly.
This can be attributed to incorrect decisions on SSSP variant
to be used. Indeed, we did not benchmark the architecture
to discover the proper parameter. CC-BLIH performs the
best on social network graphs with an improvement ratio of
3.18 (soc-sign-epinions), 2.54 (loc-gowalla), and 2.30 (wiki-
Talk).

All the previous results present the average single edge
update time for 1,000 successively added edges. Hence, they
do not say anything about the variance. Figure 5 shows the
runtimes of CC-B and CC-BLIH per edge insertion for
web-NotreDame in a sorted order. The runtime distribution
of CC-B clearly has multiple modes. Either the runtime is
lower than 100 milliseconds or it is around 700 seconds.
We see here the benefit of BCD. According to the runtime
distribution, about 59% of web-NotreDame’s vertices are
inside small biconnected components. Hence, the time per
edge insertion drops from 2,845 seconds to 700. Indeed, the
largest component only contains 41% of the vertices and
76% of the edges of the original graph. The decrease in the
size of the components accounts for the gain of performance.
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Figure 5. Sorted list of the runtimes per edge insertion for the first
100 added edges of web-NotreDame.

•  Bars#show#the#distribuAon#of#random#variable#of#level#
differences#into#three#cases#when#an#edge#is#inserted#

• Probability distribution for level difference dd
• Most edges are easy cases
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Speedup

Time (secs) Speedups Filter
Graph CC CC-B CC-BL CC-BLI CC-BLIH CC-B CC-BL CC-BLI CC-BLIH time (secs)
hep-th 1.413 0.317 0.057 0.053 0.048 4.5 24.8 26.6 29.4 0.001
PGPgiantcompo 4.960 0.431 0.059 0.055 0.045 11.5 84.1 89.9 111.2 0.001
astro-ph 14.567 9.431 0.809 0.645 0.359 1.5 18.0 22.6 40.5 0.004
cond-mat-2005 77.903 39.049 5.618 4.687 2.865 2.0 13.9 16.6 27.2 0.010
Geometric mean 9.444 2.663 0.352 0.306 0.217 3.5 26.8 30.7 43.5 0.003
soc-sign-epinions 778.870 257.410 20.603 19.935 6.254 3.0 37.8 39.1 124.5 0.041
loc-gowalla 2,267.187 1,270.820 132.955 135.015 53.182 1.8 17.1 16.8 42.6 0.063
web-NotreDame 2,845.367 579.821 118.861 83.817 53.059 4.9 23.9 33.9 53.6 0.050
amazon0601 14,903.080 11,953.680 540.092 551.867 298.095 1.2 27.6 27.0 50.0 0.158
web-Google 65,306.600 22,034.460 2,457.660 1,701.249 824.417 3.0 26.6 38.4 79.2 0.267
wiki-Talk 175,450.720 25,701.710 2,513.041 2,123.096 922.828 6.8 69.8 82.6 190.1 0.491
DBLP-coauthor 115,919.518 18,501.147 288.269 251.557 252.647 6.2 402.1 460.8 458.8 0.530
Geometric mean 13,884.152 4,218.031 315.777 273.036 139.170 3.2 43.9 50.8 99.7 0.146

Table II
EXECUTION TIMES IN SECONDS OF ALL THE ALGORITHMS AND SPEEDUPS WHEN COMPARED WITH THE BASIC CLOSENESS

CENTRALITY ALGORITHM CC. IN THE TABLE CC-B IS THE VARIANT WHICH USES ONLY BCDS, CC-BL USES BCDS AND FILTERING
WITH LEVELS, CC-BLI USES ALL THREE WORK FILTERING TECHNIQUES INCLUDING IDENTICAL VERTICES. AND CC-BLIH USES

ALL THE TECHNIQUES DESCRIBED IN THIS PAPER INCLUDING SSSP HYBRIDIZATION.

The impact of level filtering can also be seen on Figure 5.
60% of the edges in the main biconnected component do
not change the closeness values of many vertices and the
updates that are induced by their addition take less than 1
second. The remaining edges trigger more expensive updates
upon insertion. Within these 30% expensive edge insertions,
using identical vertices and SSSP hybridization provide a
significant improvement (not shown in the figure).

Better Speedups on Real Temporal Data: The best
speedups are obtained on the DBLP coauthor network which
uses real temporal data. Using CC-B, we reach 6.2 speedup
w.r.t. CC, which is bigger than the average speedup on all
networks. Main reason for this behavior is that 10% of the
inserted edges are actually the new vertices joining to the
network, i.e., authors with their first publication, and CC-
B handles these edges quite fast. Applying CC-BL gives a
64.8 speedup over CC-B, which is drastically higher than
all other graphs. Indeed, only 0.7% of the vertices require
to run a SSSP algorithm when an edge is inserted on the
DBLP network. For the synthetic cases, this number is 12%.
Overall, speedups obtained with real temporal data reach
460.8, i.e., 4.6 times greater than the average speedup on
all graphs. Our algorithms appear to perform much better
on real applications than on synthetic ones.

VI. CONCLUSION

In this paper, we propose the first algorithms to achieve
fast updates of exact closeness centrality values on incre-
mental network modification at such a large scale. Our
techniques exploit the spike-shaped shortest-distance dis-
tributions of these networks, their biconnected component
decomposition, and the existence of nodes with identical
neighborhood. In large networks with more than 500K
edges, the proposed techniques bring 99 times speedup on
average. For the temporal DBLP coauthorship graph, which
has the most edges, we reduced the centrality update time
from 1.3 days to 4.2 minutes.
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Intuition

• Incremental, exact, space-efficient, out-of-core, parallel version
of Brandes’

• Handles edge addition and removal
• Vertex and edge betweenness
• Scalable to graphs with millions of vertices
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Algorithm

• Run a modified Brandes’ on the initial graph
• Keep track of d , σ, δ in a Sdag (no P)
• On edge update, adjust the Sdag and update b
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such as Storm1, S42, Samza3, or Hadoop. Our exper-
iments test our method on graphs with millions of
vertices and edges, i.e., two orders of magnitude larger
than previous studies. By experimenting with real-world
evolving graphs, we also show that our algorithm is
able to keep the betweenness centrality measure up
to date online, i.e., the time to update the measure is
always smaller than the inter-arrival time between two
consecutive updates.

An open-source implementation of our method is
available on GitHub.4 Inclusion in SAMOA,5 a platform
for mining big data streams [11, 12] is also planned.

2 PRELIMINARIES
Let G = (V, E) be a (directed or undirected) graph,
with |V | = n and |E| = m. Let Ps(t) denote the set of
predecessors of a vertex t on shortest paths from s to t
in G. Let �(s, t) denote the total number of shortest paths
from s to t in G and, for any v 2 V , let �(s, t | v) denote
the number of shortest paths from s to t in G that go
through v. Note that �(s, s) = 1, and �(s, t | v) = 0 if
v 2 {s, t} or if v does not lie on any shortest path from
s to t. Similarly, for any edge e 2 E, let �(s, t | e) denote
the number of shortest paths from s to t in G that go
through e. The betweenness centrality of a vertex v is the
sum over all pairs of vertices of the fractional count of
shortest paths going through v.

Definition 2.1 (Vertex Betweenness Centrality): For
every vertex v 2 V of a graph G(V, E), its betweenness
centrality V BC(v) is defined as follows:

V BC(v) =
X

s,t2V,s6=t

�(s, t | v)

�(s, t)
. (1)

Definition 2.2 (Edge Betweenness Centrality): For every
edge e 2 E of a graph G(V, E), its betweenness centrality
EBC(e) is defined as follows:

EBC(e) =
X

s,t2V,s 6=t

�(s, t | e)

�(s, t)
. (2)

Brandes’ algorithm [6] leverages the notion of dependency
score of a source vertex s on another vertex v, defined
as �s(v) =

P
t 6=s,v

�(s,t|v)
�(s,t) . The betweenness centrality

V BC(v) of any vertex v can be expressed in terms of
dependency scores as V BC(v) =

P
s 6=v �s(v). The fol-

lowing recursive relation on �s(v) is the key to Brandes’
algorithm:

�s(v) =
X

w:v2Ps(w)

�(s, v)

�(s, w)
(1 + �s(w)) (3)

The algorithm takes as input a graph G=(V, E) and
outputs the betweenness centrality V BC(v) of every

1. http://storm.apache.org
2. http://incubator.apache.org/s4
3. http://samza.apache.org
4. http://github.com/nicolas-kourtellis/StreamingBetweenness
5. http://samoa.incubator.apache.org

Input: Graph G(V, E) and edge update stream ES

Output: V BC0[V 0] and EBC0[E0] for updated G0(V 0, E0)
Step 1: Execute Brandes’ alg. on G to create & store data

structures for incremental betweenness.
Step 2: For each update e2ES , execute Algorithm 1.

Step 2.1 Update vertex and edge betweenness.
Step 2.2 Update data structures in memory or disk

for next edge addition or removal.
Fig. 1: The proposed algorithmic framework.

v 2 V . It runs in two phases. During the first phase,
it performs a search on the whole graph to discover
shortest paths, starting from every source vertex s. When
the search ends, it performs a dependency accumulation
step by backtracking along the shortest paths discovered.
During these two phases, the algorithm maintains four
data structures for each vertex found on the way: a
predecessors list Ps[v], the distance ds[v] from the source,
the number of shortest paths from the source �s[v], and
the dependency �s[v] accumulated when backtracking at
the end of the search.

On unweighted graphs, Brandes’ algorithm uses a
breadth first search (BFS) to discover shortest paths, and
its running time is O(nm). The space complexity of the
algorithm is O(m+n). While this algorithm was initially
defined only for vertex betweenness it can be easily
modified to produce edge betweenness centrality at the
same time [7].

3 FRAMEWORK OVERVIEW
Our framework computes betweenness centrality in
evolving unweighted graphs. We assume new edges are
added to the graph or existing edges are removed from
the graph, and these changes are seen as a stream of up-
dates, i.e., one by one. Henceforth, for sake of clarity, we
assume an undirected graph. However, our framework
can also work on directed graphs by following outlinks
in the search phase and inlinks in the backtracking phase
rather than generic neighbors.

The framework is composed of two basic steps shown
in Figure 1. It accepts as input a graph G(V, E) and a
stream of edges ES to be added/removed, and outputs,
for an updated graph G0(V 0, E0), the new betweenness
centrality of vertices (V BC 0) and edges (EBC 0) for each
vertex v 2 V 0 and edge e 2 E0.

The framework uses Brandes’ algorithm as a building
block in step 1: this is executed only once, offline, before
any update. We modify the algorithm to (i) keep track
of betweenness for vertices and edges at the same time,
(ii) use additional data structures to allow for incremen-
tal computation, and (iii) remove the predecessors list
to reduce the memory footprint and make out-of-core
computation efficient.
Edge betweenness. By leveraging ideas from Brandes
[7], we modify the algorithm to produce edge between-
ness centrality scores. To compute simultaneously both
edge and vertex betweenness, the algorithm stores the
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Data structure

• Sdags for each source s ∈ V
• Sdag contains d , σ, δ for each other vertex t ∈ V
• No predecessors P, re-scan neighbors and use d to find them

• Save memory - space complexity O(n2)
• Fixed size data structure - efficient out-of-core management
• Same time complexity O(nm) - in practice, makes the

algorithm faster
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Pivot

• When adding or removing an edge, consider dd = |dsu − dsv |
• Three cases: dd = 0, dd = 1, dd > 1 (analogous to Green et

al.)
• Last case dd > 1 hardest - structural changes in Sdag
• Find pivots to discover structural changes

Definition (Pivot)

Let s be the current source, let d and d ′ be the distance before
and after an update, respectively, we define pivot a vertex
p | d(s, p) = d ′(s, p) ∧ ∃w ∈ Γ(p): d(s,w) 6=d ′(s,w).

• Pivots’ distance unchanged → use as starting points to
correct distances
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Finding pivots
• Addition - pivots in sub-dag rooted in uL = v
• vertices moved closer must be reachable from uL
• Can be found during exploration while fixing σ
• Removal - pivots may be anywhere
• Need one exploration to find them
• Need separate exploration from found pivots to correct

distances
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. Y, APRIL 2014 5

shortest path distance. Since only one edge is added at
a time, we simply denote this difference as dd.

Depending on how large dd is, a different type of
update is needed. In particular, three cases can arise:
• dd = 0 (Proposition 3.1);
• dd = 1 (0 level rise, Section 4.1);
• dd > 1 (1 or more levels rise, Section 4.2).

The first case involves two vertices that are at the same
distance from the source vertex.

Proposition 3.1: Given two vertices u1 and u2 such that
they have the same distance from a source vertex s, and
an edge e = (u1, u2) that connects the two vertices, no
shortest path from s to any other node in the graph
passes trough the edge e, i.e., d(s, u1) = d(s, u2) =)
8t 2 V,�(s, t | e) = 0.

Proof: Omitted for brevity (see [17, 24]).
No shortest path goes through the edge, no change oc-
curs in the SPDAG, so the current source can be ignored.

In the second case, the new edge connects two vertices
whose distance from the source differs only by one
(Fig. 2a). Thus, this addition does not cause any struc-
tural change in the SPDAG, and all the distances remain
the same. However, new shortest paths can be created
due to the addition, and therefore the shortest paths and
the dependencies of the graph must be updated.

In the third and most complex case, dd > 1, structural
changes occur in the SPDAG (Fig. 2b depicts this case
after the rise of uL). In order to handle these changes
properly, we introduce the concept of pivot.

Definition 3.2 (Pivot): Let s be the current source, let
d() and d0() be the distance before and after an update,
respectively, we define pivot a vertex pV | d(s, pV ) =
d0(s, pV ) ^ 9w 2 neighbors(pV ): d(s, w) 6=d0(s, w).

Thus, a pivot is a vertex that, under an edge addition
or removal, does not change its distance from the source
s, but has neighbors that do so.

When dd > 1, we need to first compute the new dis-
tances by leveraging the pivots. Given that their distance
has not changed, we can use them as starting points
to correct the distances in the SPDAG. In the case of
addition, all the pivots are situated in the sub-dag rooted
in uL, so we can combine the discovery of the pivot with
the correction of the shortest paths. The different cases
that can arise are discussed in detail in Section 4.2.

There exists also a fourth case: the new edge connects
two previously disconnected components. This case de-
generates into the case dd = 1. Indeed, no previous
shortest path existed between the two disconnected com-
ponents, so there is no structural change in the SPDAG.

Finally, new vertices arriving in the graph are handled
simply by adding them to the source set V 0 with a zero
V BC 0. Then, for all sources, the new vertex is considered
as uL with d[uL] = d[uH ] + 1, where uH is the other
endpoint of the incoming edge (therefore dd = 1).
Edge removal. In the case of an edge (u1, u2) removed
from the graph, dd is at most one, as the two endpoints
are connected before the removal. In this case, one of the
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Fig. 2: The red (light) edge is added/removed and either
does not cause structural changes (a), or does so (b).

two endpoints, uH , is closest to the source, and clearly
the edge (uH , uL) belongs to at least one shortest path
from the source s to uL. Therefore, the algorithm needs
to check whether uL has other shortest paths from s, not
passing trough (uH , uL). Again, there are three cases:
• dd = 0 (Proposition 3.1);
• dd = 1 and uL has other predecessors (0 level drop,

Section 4.1);
• dd = 1 and uL has no other predecessor (1 or more

levels drop, Section 4.3).
In the second case, if uL is connected to at least one

vertex u0
H such that dd(uH , u0

H) = 0, then uL will remain
at the same distance (Fig. 2a), and no structural change
occurs. Thus distances remain the same. However, some
shortest paths coming through (uH , uL) are lost, so the
betweenness centrality needs to be updated.

In the third and most complex case, structural changes
occur in the graph (Fig. 2b depicts this case before uL

drops). Also in this case we make use of pivots to correct
the distances in the SPDAG first, and subsequently adjust
the shortest paths and dependency values. However, not
all pivots will be found in the sub-dag rooted in uL

after the removal. This difference makes this case more
complicated than the addition, as some pivots cannot
be discovered while adjusting the shortest paths (e.g., if
nodes uL and r were connected). Therefore, we need to
first search and find the pivots, and then start a second
BFS from those pivots to correct the shortest paths. The
details of this case are covered in Section 4.3.

There is also the case where the edge removed discon-
nects the sub-dag rooted in uL from the rest of the graph
(or, similarly, turns uL into a singleton). In this case, the
shortest paths coming from the source, as well as the
dependencies going to the source from this component
must be removed and the betweenness adjusted. If uL is
to be removed, all its edges are iteratively removed and
the singleton is replaced with zero VBC’.

4 INCREMENTAL ADDITION AND REMOVAL
In this section we discuss the details of our framework
in the case of edge addition and removal.
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Algorithm 4: Betweenness update for addition of an
edge where uL rises one or more levels after addition.

BFS Traversal from uL:
1 LQ[d[uL]] uL; d0[uL] = BD[s].d[uH ] + 1
2 while QBFS not empty do
3 v  QBFS ; t[v] DN ; �0[v] = 0
4 for w 2 neighbors(v) do
5 if d0[w] + 1 == d0[v] then �0[v]+ = �0[w];
6 if d0[w] > d0[v] and t[w] == NT then
7 t[w] DN ; d0[w]=d0[v]+1; LQ[d0[w]] w; QBFS w
8 if d0[w] == d0[v] and BD[s].d[w] 6= BD[s].d[v] then
9 if t[w] == NT then

10 t[w] DN ; LQ[d0[w]] w; QBFS  w
Dependency Accumulation:

11 level = |V 0|; te[e] NT , e 2 E
12 while level > 0 do
13 while LQ[level] not empty do
14 w  LQ[level]
15 for v 2 neighbors(w) do
16 if d0[v] < d0[w] then
17 Execute module in Alg. 3.
18 if (t[v] = UP ) and (v 6= uH or w 6= uL) then
19 �0[v]� = ↵
20 if BD[s].d[v] == BD[s].d[w] then ↵ = 0.0
21 if BD[s].d[w] < BD[s].d[v] then
22 ↵ = BD[s].�[w]

BD[s].�[v]
(1 + BD[s].�[v])

23 if (v, w) 6= (uL, uH) then EBC0[(v, w)]� = ↵
24 if d0[v] == d0[w] and BD[s].d[w] 6=BD[s].d[v] then
25 Execute module in Alg. 5.
26 if w 6= s then V BC[w]+ = �0[w]�BD[s].�[w];
27 level = level � 1;

Algorithm 5: EBC correction if endpoints were not at
the same level before the change.

1 if te[(v, w)] == NT then
2 te[(v, w)] UP ; ↵ = 0
3 if BD[s].d[w] > BD[s].d[v] then
4 ↵ = BD[s].�[v]

BD[s].�[w]
(1 + BD[s].�[w])

5 if BD[s].d[w] < BD[s].d[v] then
6 ↵ = BD[s].�[w]

BD[s].�[v]
(1 + BD[s].�[v])

7 EBC[(v, w)]� = ↵

and distances from the source may change. Therefore,
the vertices do not inherit the shortest paths from their
predecessors (line 3), rather, the shortest paths are com-
puted during the modified BFS.

The structural changes that can happen in the SPDAG
are depicted in Figure 3. Let us examine these cases for
a vertex x and its neighbor y. Let a sibling be a neighbor
of vertex that is at the same distance from the source.
Before the addition, x and y could be either siblings (case
1, Fig. 3) or predecessor and successor (case 2). If y is
now a predecessor of x (case 1a), the algorithm adjusts
the shortest paths of x (line 5). If x was and still is a
predecessor of y (line 6), the new edge has caused both
x and y to move closer to s by the same amount (case 2a).
In this case, we update the distance from s and insert y in
the BFS queue for further exploration (line 7). If y is now
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Fig. 3: Possible configurations of an edge before and after
an update that causes structural changes.

on the same level as x, but was not before the addition
(case 2b), y is added to the BFS for further exploration
(line 10). If y moved two levels w.r.t. x (case 2c), it will
be discovered first in the BFS after the update (line 6).

Clearly there are no structural changes in the vertices
at levels above uL (i.e., closer to the source). The possible
sub-cases examined cover all possible scenarios of how
a pair of connected vertices (and thus their edge) can be
found after the addition of the new edge. The shortest
paths and distances (�0[·], d0[·]) are updated in the way
that the original Brandes’ algorithm proposes.

In the dependency accumulation phase, the depen-
dency score of all vertices examined is updated with
the new number of shortest paths computed in the
BFS phase. This part of the algorithm is similar to the
corresponding one in Algorithm 2. However, there are
important differences in the correction of the dependency
for the edge betweenness centrality (lines 20–25, Alg. 4).
Assuming v is x and w is y, if both x and y remain at the
same relative distance from the source, the dependency
to be subtracted ↵ is calculated in line 4 of Alg. 3
(case 2a). However, if y moves closer (case 2c), then y
was a successor of x but now it is a predecessor of x.
Therefore, we need to subtract the dependency on y. The
subtracted value is adjusted by switching w with v in the
dependency accumulation formula (lines 21–22, Alg. 4).

If the endpoints of the edge were at the same level
before the addition (case 1) there is no need for correction
since no dependency was accumulated on the edge (line
20, Alg. 4). If the endpoints are now at the same level
but were not before (case 2b), the old dependency needs
to be subtracted from the betweenness of the edge. Also,
the edge is marked not to be traversed again (Alg. 5). In
Alg. 5, if w was a successor of v, the old dependency is
calculated on line 4, whereas if w was a predecessor of
v, the old dependency is calculated on line 6. The vertex
betweenness centrality is updated on line 26 of Alg. 4 by
adding the new dependency accumulated on the vertex
w and subtracting the old dependency.

In summary, all possible cases of structural changes
in the SPDAG below uL are covered by Alg. 4, which
correctly updates the betweenness scores and accompa-
nying data structures of all affected vertices and edges.

• Consider x ∈ Γ(y), x can either be a sibling or a predecessor
of y

• Each case requires slightly different combination of corrections
for d , σ, δ

• y is pivot in 1d, 2e, 2f
• Removal for case 1d can be optimized (pivot y is sibling of x)
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Scalability

• Out-of-core - stream Sdag from disk
• In-place update on disk to minimize writes

• Columnar storage for d , σ, δ
• Read only d , skip rest if dd = 0

• Parallelization - coarse grained over s
• Implementation in MapReduce
• Amenable to Apache Storm/Flink/Spark
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Fig. 5: Speedup of the framework’s 3 versions on syn-
thetic and real graphs executed on single machines (ad-
dition).

cessors lists (MP), (2) in memory without predecessors
lists (MO), (3) on disk without predecessors lists (DO).

Infrastructure. For the single-machine version (both
in-memory and out-of-core), we use high-end servers
with 8-core Intel Xeon @2.4GHz CPU and 50GB of
RAM each. For the parallel version, we use a Hadoop
cluster with hundreds of machines with 8-core Intel Xeon
@2.4GHz CPU and 24GB of RAM each. We report the av-
erage performance over 10 executions of the algorithms
for each experimental setup.

6.1 Speedup over Brandes’ algorithm

Predecessors list optimization. Figure 5 presents the
cumulative distribution function (CDF) of the speedup
over Brandes’ algorithm when testing the three versions
of the framework on edge addition. Each point in the
graph represents the speedup when adding one of the
100 edges in the stream (averaged over 10 runs). The
results show that removing the predecessors lists can
actually boost the performance (the MO version is always
faster than the MP version). As the algorithm does not
need to create the lists nor to maintain them, the over-
head, and thus the overall execution time, is reduced.
Related work comparison. As shown in Table 3, the
average performance of our framework is comparable to
the reported results of previously proposed techniques.
The method in [21] shows faster results in networks with
low clustering coefficient where changes do not affect
many vertices. However, in social networks with high
clustering, the method by Kas et al. [21] and especially
QUBE [25] are slow due to high cost in updating vertex
centrality (in QUBE, many vertices might be included in
the minimum union cycle to be updated).

We also compared with the method by Green et al.
[17] using a version of their code. By taking into account
implementation differences (Java vs. C), the speedups
observed are comparable to our method. However, under
limited main memory, the method by Green et al. fails to
tackle a medium-sized network like slashdot. Instead, as
demonstrated later in Table 4, our framework can handle
even larger datasets using out-of-core techniques with
small main memory footprint and significant speedups.

TABLE 3: Speedup comparison with related work.

Dataset |V | MO avg (max) [21] [25] [17]

wikivote 7k 75 (181) 3
contact 10k 75 (153) 4

UCI (fb-like) 2k 32 (90) 18
ca-GrQc 4k 31 (378) 68 2 40

ca-HepTh 8k 42 (80) 358 40
adjnoun .1k 48 (172) 20

ca-CondMat 19k 94 (395) 109
as-22july06 23k 70 (291) 61

slashdot (50GB) 51k 88 (178) X

Additionally, these past techniques compute only ver-
tex centrality, while our method computes both vertex
and edge centrality with the shown speedups.
Out-of-core performance. When BD[·] is stored on disk
(DO) rather than in memory (MO), we observe a decrease
of the speedup due to the slower access time of the
disk. Overall, the DO version is more than 10⇥ faster
than Brandes’ for the 1k and more than 30⇥ for the
10k graph (median values). The time to process a single
edge depends heavily on which parts of the graph it
connects and how many structural changes it produces.
The in-memory version is CPU bound, so this variability
is reflected in the execution time. On the other hand, the
out-of-core version is I/O bound, and the execution time
is dominated by disk access and the variability of the
CPU time spent becomes latent. In the remainder of this
section we use the DO version. Key speedup results are
summarized in Table 4.
MapReduce speedup. Figure 6(a) shows the CDF of
speedup over Brandes’ algorithm when executing the DO
version on a MapReduce cluster for addition of edges.
In the experiment, we adjust the number of mappers
so that each mapper is assigned 1k sources per graph.
Brandes’ algorithm is compared with the cumulative ex-
ecution time of our algorithm, i.e., the sum of execution
times across all mappers and reducers. By increasing the
graph size from 1k to 100k vertices, the median speedup
increases from ⇡ 10 to ⇡ 50. When increasing the graph
size to 1000k vertices, the median speedup drops to ⇡ 10.
Compared to the experiments on a single machine, there

TABLE 4: Summary of key speedup results.

Dataset Addition Removal
Min Med Max Min Med Max

1k 3 12 23 2 10 19
10k 16 34 62 2 35 155

100k 21 49 96 4 45 134
1000k 5 10 20 1 12 78

wikielections 9 47 95 1 45 92
slashdot 15 25 121 8 24 127

facebook 10 66 462 1 102 243
epinions 24 56 138 2 45 90

dblp 3 8 15 3 8 429
amazon 2 4 15 2 3 5

Speedup over Brandes’ on synthetic and real graphs (n = 10k)

• In-memory (M-) version faster than out-of-core (D-)
• Without predecessor (-O) always faster than with predecessors

(-P)
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Fig. 6: Speedup of DO version on synthetic/real graphs executed on a MapReduce cluster (additions/removals).

is an increase in the variability of the framework’s per-
formance when accessing the disks on the MapReduce
cluster. This effect is partly due to contention on disk
access on the cluster caused by concurrent jobs, as well
as increased computation load per machine and source.
Overall, the use of parallel execution leads to improved
speedups for larger graphs that would be impossible to
process on a single machine. As an additional benefit,
we also get reduced wall-clock time.

Figure 6(b) shows the CDF of speedup over Brandes’
algorithm on a MapReduce cluster for removal of edges.
The setup is similar to the previous experiment. By
increasing the graph size from 1k to 100k vertices, the
median speedup increases from ⇡ 10 to ⇡ 45. When
increasing the graph size to 1000k vertices, the median
speedup drops to ⇡ 12. In this case, the speedup is
slightly higher than when adding edges, because the
removal of edges reduces the shortest paths between
vertices and causes slightly less computational load.
Real graph structure. Figures 6(c) and (d) show the CDF
of speedup over Brandes’ algorithm for the real graphs
when adding or removing edges, respectively. Also in
this case we adjust the number of mappers so that each
mapper is assigned 1k sources per graph.

In the edge addition, facebook exhibits the highest
variability with a median speedup of ⇡ 66. In the edge
removal, dblp exhibits higher variability than facebook
with a median speedup of ⇡ 8. When adding edges
on slashdot, which has a number of edges similar to
wikielections but fewer vertices, our framework exhibits
lower variability and smaller maximum speedup than on
wikielections. It also performs better on facebook than
slashdot, both in addition and removal of edges, even
if the two graphs have approximately the same number
of vertices. One reason may lie in the higher clustering
coefficient of wikielections and facebook, which reduces
the number of structural changes upon update.

In support to our hypothesis, for amazon we observe
a low median speedup of ⇡ 4. The low performance
is due to the structural properties of this graph: very
low clustering coefficient and high diameter lead to
many structural changes upon edge addition or removal,
and thus higher computational load. For example, in
both addition and removal of edges, we observe that
on dblp, which is of the same order of magnitude as
amazon but with a much higher clustering coefficient,
our method achieves about double the speedup than
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Fig. 7: (a-b) Computation time under increasing number
of mappers. (c-d) Computation time under constant ratio
of workload over mappers.
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on amazon. We conjecture that performance on a larger
graph is tightly connected with its structural properties,
the longer disk access time, and more computational load
per source (more vertices to be traversed). Exploring the
connections between algorithm’s performance and graph
properties is an interesting path for future investigation.

6.2 Scalability for online updates
Figures 7(a-b) analyze the strong scaling properties of
the algorithm in the case of edge addition. In these
experiments we keep the workload fixed and increase
the parallelism level. By employing a larger number of
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is an increase in the variability of the framework’s per-
formance when accessing the disks on the MapReduce
cluster. This effect is partly due to contention on disk
access on the cluster caused by concurrent jobs, as well
as increased computation load per machine and source.
Overall, the use of parallel execution leads to improved
speedups for larger graphs that would be impossible to
process on a single machine. As an additional benefit,
we also get reduced wall-clock time.

Figure 6(b) shows the CDF of speedup over Brandes’
algorithm on a MapReduce cluster for removal of edges.
The setup is similar to the previous experiment. By
increasing the graph size from 1k to 100k vertices, the
median speedup increases from ⇡ 10 to ⇡ 45. When
increasing the graph size to 1000k vertices, the median
speedup drops to ⇡ 12. In this case, the speedup is
slightly higher than when adding edges, because the
removal of edges reduces the shortest paths between
vertices and causes slightly less computational load.
Real graph structure. Figures 6(c) and (d) show the CDF
of speedup over Brandes’ algorithm for the real graphs
when adding or removing edges, respectively. Also in
this case we adjust the number of mappers so that each
mapper is assigned 1k sources per graph.

In the edge addition, facebook exhibits the highest
variability with a median speedup of ⇡ 66. In the edge
removal, dblp exhibits higher variability than facebook
with a median speedup of ⇡ 8. When adding edges
on slashdot, which has a number of edges similar to
wikielections but fewer vertices, our framework exhibits
lower variability and smaller maximum speedup than on
wikielections. It also performs better on facebook than
slashdot, both in addition and removal of edges, even
if the two graphs have approximately the same number
of vertices. One reason may lie in the higher clustering
coefficient of wikielections and facebook, which reduces
the number of structural changes upon update.

In support to our hypothesis, for amazon we observe
a low median speedup of ⇡ 4. The low performance
is due to the structural properties of this graph: very
low clustering coefficient and high diameter lead to
many structural changes upon edge addition or removal,
and thus higher computational load. For example, in
both addition and removal of edges, we observe that
on dblp, which is of the same order of magnitude as
amazon but with a much higher clustering coefficient,
our method achieves about double the speedup than
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and update times for betweenness centrality.

on amazon. We conjecture that performance on a larger
graph is tightly connected with its structural properties,
the longer disk access time, and more computational load
per source (more vertices to be traversed). Exploring the
connections between algorithm’s performance and graph
properties is an interesting path for future investigation.

6.2 Scalability for online updates
Figures 7(a-b) analyze the strong scaling properties of
the algorithm in the case of edge addition. In these
experiments we keep the workload fixed and increase
the parallelism level. By employing a larger number of

Speedup over Brandes’ for out-of-core version on synthetic and real
graphs (n = 1M)

• Out-of-core version scales up to 1M vertices
• Speedup up to 2 orders of magnitude



132/200

Conclusions

• Fully dynamic (addition and removal)
• Algorithm can scale to graphs with realistic size
• Ideal horizontal scalability
• O(n2) space bottleneck
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Approximation Algorithms
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Why should we look for an approximation?

Static graphs

• many interesting networks are web-scale;
• computing the exact centralities can be extremely expensive;
• is there a real reason (i.e., application) to require the exact

values?

Dynamic graphs

• exact centralities change at all times;
• not worth chasing for highly volatile quantities;

In both cases, high quality approximations are sufficient in practice
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What kind of approximation
• v : vertex with exact centrality c(v)
• c̃(v): value that “approximates” c(v)

Definition (Absolute error)

errabs(v) = |c(v)− c̃(v)|

Definition (Relative error)

errrel(v) = |c(v)− c̃(v)|/c(v)

Definition ((ε, δ)-approximation)

• Let ε ∈ (0, 1) and δ ∈ (0, 1);
• a (ε, δ)-approximation is a set {c̃(v), v ∈ V } of n values, such

that
Pr (∃v ∈ V s.t. err(v) > ε) ≤ δ;

• it offers uniform probabilistic guarantees over all the nodes;
• it assumes normalized versions of centrality (i.e., in [0, 1]).
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Sampling

Many of the algorithms we present are sampling-based.

General Sampling Based Algorithm

1 Select independently at random (not all uniformly) a small set
of objects (e.g., single vertices, pair of vertices, shortest
paths);

2 Perform some computation using these objects (e.g., SSSP
from vertex);

3 Use the results of the computation to estimate the centrality
of all nodes;
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Sampling

Why sampling?
By only select a small subset of the “objects” (instead of the whole
set), computing the approximation is faster than computing the
exact values

Questions for sampling algorithms

• What “objects” to sample?
• How to sample?

If sampling procedure is slow, then the advantages are lost;
• How many objects to sample in order to guarantee an

(ε, δ)-approximation?
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Outline

• Approximation algorithms for static graphs
• A sampling-based algorithm for closeness
• A sampling+pivoting algorithm for closeness
• Two sampling-based algorithms for betweenness

• Approximation algorithms for dynamic graphs
• Two sampling-based algorithms for betweenness
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Approximation Algorithms for Static Graphs
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Fast approximation of centrality

D. Eppstein, J. Wang

Journal of Graph Algorithms and Applications (2004)
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Idea

Interested in approximating closeness:

c(x) = n − 1∑
y 6=x d(x , y)

(inverse of the average distance)
Fastest-known exact algorithm: APSP

I.e., run Dijkstra’s algorithm from each vertex v
Idea: only run Dijkstra from a few sources!

Warning
The algorithm actually computes an approximation for the inverse
of closeness:

c−1(v) =
∑

y 6=x d(u, v)
n − 1

(effectively the average distance)
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Algorithm

• Let k be the number of sources to obtain the desired
approximation;

• For i = 1, . . . , k:
• pick a vertex ui uniformly at random
• run Dijkstra from ui

• Let

c̃−1(v) = n
n − 1

∑k
i=1 d(ui , vi )

k

Theorem
E
[
c̃−1(v)

]
= c−1(v).

Question
How large should k be to get a good approximation of c−1?
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How much to sample
Lemma
Let ∆ be the diameter of the graph and let ε, δ ∈ (0, 1). If

k ≥ 2
ε2

(
ln 2 + ln n + ln 1

δ

)

Then, with probability at least 1− δ
∣∣∣c̃−1(v)− c−1(v)

∣∣∣ ≤ ∆ε, for all v ∈ V

Proof

1 Hoeffding inequality to bound the error of a single vertex;
2 Union bound to get uniform guarantees.

Running time: O
(

log n−log δ
ε2 (n log n + m)

)
.
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Computing Classic Closeness
Centrality, at Scale

E. Cohen, D. Delling, T. Pajor, R. F. Werneck

COSN ’14: ACM Conference on Social Networks (2014)
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Issues with sampling

• Assume that the distance distribution from a vertex v has a
heavy tail, then the average distance

c−1(v) =
∑

u 6=v d(u, v)
n − 1

is dominated by few distant vertices;
• it is unlikely that these vertices are among the k that are

sampled
• Hence the sample average

c̃−1(v) = n
n − 1

∑k
i=1 d(ui , vi )

k

is a poor estimator of the average distance c−1(v).
• Sampling along can’t give us small relative error
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Pivoting

Definition
Pivot The pivot p(v) of a vertex v is the sampled vertex which is
closest to v (p(v) ∈ S).

• We have the exact value of c−1(p(v)), can we leverage it?
• The average SP distance c−1(v) of v is “close” to c−1(p(v)):

c−1(p(v))− d(v , p(v)) ≤ c−1(v) ≤ c−1(p(v))− d(v , p(v))

• One can actually prove that, with high probability,

c−1(p(v)) + d(v , p(v)) ≤ 3c−1(v) + O(1)

Pivoting by itself is not satisfactory: the relative error is still
somewhat large.

Idea: combine sampling and pivoting into a hybrid estimator
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Hybrid Estimator
For each vertex v with pivot p(v), split the set V \ S into three
sets:

• L(v): vertices in V \ S at distance at most d(v , p(v)) from
p(v);

• HC(v): vertices in S with distance greater than d(v , p(v))
from p(v).

• H(v): vertices in V \ S at distance greater than d(v , p(v))
from p(v).

The hybrid estimator is

c̃−1(v) = 1
n − 1


 ∑

u∈H(v)
d(p(v), u) +

∑

u∈HC(v)
d(u, v)

+ |L(v)|
|L(v) ∩ S|

∑

u∈L(v)∩S
d(u, v)




We have E[c̃−1(v)] 6= c−1(v).
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Guarantees

Theorem

• With k = 1/ε3, the hybrid estimator has normalized RMSE
O(ε).

• With k = ε−3 ln n, the maximum relative error is O(ε) w.h.p.
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Experiments

Table 1. Evaluating algorithms on undirected instances. For each instance, we report its number of nodes and edges, and for
several algorithms the running time and average relative error.

Exact Sampling Pivoting Hyb.-0.1 Hyb.-ad
|V | |E| time err. time err. time err. time err. time

type instance [·103] [·103] ¥ [h:m] [%] [sec] [%] [sec] [%] [sec] [%] [sec]
road fla-t 1 070 1 344 59:30 5.4 24.4 3.2 21.6 2.5 28.3 2.8 73.2

usa-t 23 947 28 854 44 222:06 2.9 849.4 3.7 736.4 2.0 2 344.3 2.6 9 937.9
grid grid20 1 049 2 095 70:34 4.3 26.5 3.5 26.8 2.9 29.2 3.3 69.7
triang buddha 544 1 631 19:07 3.6 14.5 3.3 13.6 2.4 15.9 3.2 30.7

buddha-w 544 1 631 21:25 3.5 16.4 2.6 15.5 2.2 18.5 2.9 38.1
del20-w 1 049 3 146 72:06 2.7 27.4 3.6 26.7 2.6 32.6 2.7 71.0
del20 1 049 3 146 67:54 4.1 25.6 5.3 25.2 3.7 27.0 3.6 54.7

game FrozenSea 753 2 882 38:25 3.0 22.1 4.1 20.2 2.1 24.0 3.4 49.3
sensor rgg20 1 049 6 894 137:36 1.6 54.2 3.8 49.3 2.1 63.7 2.2 123.3

rgg20-w 1 049 6 894 160:29 1.6 61.2 3.8 57.1 2.1 73.3 2.3 142.3
comp Skitter 1 695 11 094 248:27 0.7 59.7 14.3 55.2 0.7 61.6 3.6 109.5

MetroSec 2 250 21 643 269:51 0.6 52.1 2.3 47.5 0.6 53.2 0.3 93.2
social rws20 1 049 3 146 113:40 0.9 45.6 3.0 41.3 0.9 49.4 0.9 98.6

rba20 1 049 6 291 132:35 0.8 56.8 9.7 48.4 0.8 60.2 1.0 117.4
Hollywood 1 069 56 307 226:42 1.0 86.5 14.6 81.8 1.0 85.7 1.9 117.6
Orkut 3 072 117 185 2 973:09 1.7 377.4 7.2 367.6 1.7 376.4 2.1 553.0

1066 RAM, running Windows 2008R2 Server. Each CPU has
8 cores (2.90GHz, 8 ◊ 64 kiB L1, 8 ◊ 256 kiB, and 20MiB L3
cache), but all runs are sequential. We use 32-bit integers to
represent arc lengths.

We test a variety of instances, including social networks (Epin-
ions [43], WikiTalk [31,32], Flickr [38], Hollywood [7,10], Twit-
ter [22], LiveJournal [34], and Orkut [52]), computer networks
(Gnutella [37], Skitter [33], Slashdot [34], MetroSec [36]), and web
graphs (NotreDame [1], Indo [7,10], Indochina [7,10]). All these
instances are unweighted, and some are directed. We consider
two additional synthetic instances: rws20 is generated according
to a preferential attachment model [51] and rba20 is a small-world
graph [3].

We also test road networks [23]. Instances fla-t (Florida) and
usa-t (USA) are undirected and use TIGER data; eur-t and eur-d
are directed and represent Western Europe. For these instances,
the su�x indicates whether edge costs represent travel times (-t)
or distances (-d). Instance grid20 is a 1024 ◊ 1024 unweighted
grid.

The buddha instance is a computer graphics mesh representing
a three-dimensional object [45]. Instance del20 is a Delaunay
triangulation of 220 random points on the unit square [28]. Nodes
also represent random points in the unit square for rgg20, but
now two nodes are connected by an edge if the corresponding
Euclidean distance is below a given threshold (chosen to ensure
the graphs are almost connected [28]). Such random geometric
graphs often model sensor networks. These three instances are
unweighted; their counterparts with a -w su�x have edge lengths
corresponding to Euclidean distances. Instance FrozenSea is a
grid with obstacles from Starcraft (a computer game) available
from movingai.com [46]. Edge lengths are set to 408 for axis-
aligned moves and 577 for diagonal moves (577/408 ¥

Ô
2).

8.1 Undirected Closeness Centrality
Table 1 summarizes the main results for undirected instances. We
set k = 100 for this experiment. We evaluate sampling, pivoting,
and our novel hybrid algorithm with respect to running time

and solution quality. We consider two versions of our algorithm,
both based on Algorithm 1: the first uses ‘ =


1/k = 0.1; the

adaptive version picks, for each node, the ‘ value from {0.001,
0.025, 0.05, 0.1, 0.2, 0.5, 0.99} that minimizes the estimated error.

For each instance, Table 1 shows the number of nodes and
edges it contains (in thousands), followed by the estimated time
needed to compute exact centralities for all nodes. Then, for each
approximate algorithm, we show its average relative error (over
1000 random nodes queried) and the total time for computing
centrality estimates for all nodes (including preprocessing).

We observe that the exact algorithm is prohibitively time-
consuming for large graphs, justifying our settling for approxima-
tions. Among those, all methods do reasonably well, with average
relative error always below 15%. The sampling algorithm is in
general more robust than pivoting, with average relative error
below 6%. For some high-diameter graphs (such as road networks
and meshes), however, pivoting finds better results. Our hybrid
algorithm successfully achieves a good tradeo� between these two
approaches. Its quality usually matches the best among pivoting
and sampling, and often outperforms them.

The adaptive version of our algorithm goes one step further and
actually uses di�erent values of ‘ to obtain even finer tradeo�s.
This can occasionally be helpful (as in MetroSec), but in general
using fixed ‘ is better in terms of running time and quality.
Although Algorithm 2 uses additional space to make even finer
choices, it leads to very similar results (not shown in the table).
We conclude that fixing ‘ =


1/k is a good strategy: It is more

robust than either sampling or pivoting, with very little overhead.
On the biggest graph we tested (Orkut), with 117 million edges,
we obtained centrality estimates with approximation guarantees
for all nodes in about six minutes.

Figure 2 examines the quality of the algorithms in Table 1 in
more detail. For comparison, we also show results for the hybrid
algorithm with ‘ = 0.5. Once again, we compute the relative error
for 1000 queries, plotted in order of increasing error. In other
words, for each value 1 Æ i Æ 1000, we report the i-th smallest
relative error observed for each algorithm. We consider six repre-

10

The hybrid estimator is better than just-sampling and just-pivoting.
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Summary for closeness

• Sampling can help, but not alone
• Pivoting alone is not good
• The hybrid approach is promising, but the sample size results

are somewhat disappointing (very large sample sizes!)

More work to do!
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Centrality Estimation in Large
Networks

U. Brandes, C. Pich

International Journal of Bifurcation and Chaos (2007)
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Betweenness centrality

We consider a normalized version:

b(v) = 1
n(n − 1)

∑

s,t 6=v

σst(v)
σst

∈ [0, 1]

• σst : number of SPs from s to t
• σst(v): number of SPs from s to t going through v

Exact algorithm: Brandes’ Algorithm
1 Run Dijkstra’s algorithm from each source vertex s
2 After each run, perform aggregation by walking SP DAG

backwards
Idea: run Dijkstra only from a few sources (as in EW’01)
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How can one get an (ε, δ)-approximation?

k ← 1
ε2

(
ln n + ln 2 + ln 1

δ

)
// sample size

b̃(v)← 0, for all v ∈ V
for i ← 1, . . . , k do // Brandes’ algo iterates over V

vi ← random vertex from V , chosen uniformly
Perform single-source SP computation from vi
Perform partial aggregation, updating b̃(u), u ∈ V , like in
exact algorithm

end
Output { ˜b(v), v ∈ V }

Theorem
The output is a (ε, δ)-approximation:

Pr
(
∃v ∈ V s.t. |b̃(v)− bv | > ε

)
≤ δ
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How do they prove it?

Start with bounding the deviation for a single vertex v (Hoeffding
inequality):

Pr(|b̃(v)− b(v)| > ε) ≤ 2e−2kε2

Then take the union bound over n vertices to ensure uniform
convergence

The sample size k must be such that

2e−2kε2 ≤ δ

n

That is, to get an (ε, δ)-approximation, we need

k ≥ 1
2ε2

(
ln n + ln 2 + ln 1

δ

)
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Better Approximation of Betweenness
Centrality

R. Geisberger, P. Sanders, D. Schultes

ALENEX (2008)
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Issues with standard estimator
The standard estimator

b̃(v) = 1
k

k∑

i=1
δui (v)

produces large overestimates for unimportant vertices close to a
sampled vertex

Example

• Let v be a degree-two vertex connecting a degree-one vertex
u to the rest of the network;

• If u is sampled, then b̃(v) overestimates b(v) by a factor of
n/k

Possible solution: stop vertices from “profiting” for being near a
sampled vertex.
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A new sampling scheme

Idea: sample pairs (s, d) of vertex and direction (‘forward” or
“backward”)

• When sampling (s, forward)
• run Dijkstra from s

• When sampling (t, backward)
• virtually flip direction of edges (if directed graph);
• run Dijkstra from s

We need to adapt the estimator b̃(v).
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New estimator
For a vertex v , define

gv (u, d) =





∑
t∈V ,t 6=u,v

σut (v)
σut

d(u,v)
d(v ,t) if d = forward

∑
t∈V ,t 6=u,v

σut (v)
σut

(
1− d(u,v)

d(v ,t)

)
if d = backward

The new estimator for b(v) is

b̃(v) = 2
k

k∑

i=1
gv (ui , di )

The factor 2 corrects for the reduced sampling probabilities (1/2n)
Theorem
If

k ≥ 1
2ε2

(
ln 2 + ln n + ln 1

δ
)
)
,

then the output is a (ε, δ)-approximation:

Pr
(
∃v ∈ V s.t. |b̃(v)− bv | > ε

)
≤ δ
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Experiments
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Figure 1: Euclidean distance and inversions for canonical centrality of Belgium.

94
Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 

Sample size

Euclidean distance between the vector of exact centralities and the
vector of estimated centralities.
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Fast Approximation of Betweenness
Centrality through Sampling

M. Riondato, E. M. Kornaropoulos

DMKD: Data Mining and Knowledge Discovery (2015)
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What is wrong with this sampling approach?

1) The algorithm needs

k ≥ 1
2ε2

(
ln n + ln 2 + ln 1

δ

)

• This is loose due to the union bound, and does not scale well
(experiments)

• The sample size depends on ln n. This is not the right
quantity: not all graphs of n nodes are equally “difficult”:
e.g., the n-star is “easier” than a random graph

The sample size k should depend on a more specific characteristic
quantity of the graph

2) At each iteration, the algorithm performs a SSSP computation
Full exploration of the graph, no locality
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How can we improve the sample size?

[R. and Kornaropoulos, 2015] present an algorithm that:

1) uses a sample size which depends on the vertex-diameter, a
characteristic quantity of the graph.

The derivation uses the VC-dimension of the problem;

2) samples SPs according to a specific, non-uniform distribution
over the set SG of all SPs in the graph. For each sample, it
performs a single s − t SP computation

• More locality: fewer edges touched than single-source SP
• Can use bidirectional search / A*, . . .
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What is the algorithm?

VD(G)← vertex-diameter of G // stay tuned!
k ← 1

2ε2 (blog2(VD(G)− 2c) + 1 + ln(1/δ)) // sample size
b̃(v)← 0, for all v ∈ V
for i ← 1 . . . , k do

(u, v)← random pair of different vertices, chosen uniformly
Suv ← all SPs from u to v // Dijkstra, trunc. BFS, ...
p ← random element of Suv , chosen uniformly // not
uniform over SG
b̃(w)← b̃(w) + 1/k, for all w ∈ Int(p) // update only
nodes along p

end
Output {b̃(v), v ∈ V }

Theorem
The output {b̃(v), v ∈ V } is an (ε, δ)-approximation.
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VC-dimension

• The Vapnik-Chervonkenkis (VC) dimension is a combinatorial
quantity that allows to study the sample complexity of a
learning problem;

• It allows to obtain uniform guarantees on sample-based
approximations of expectations of all functions in a family F ;

• Not easy to compute exactly, somewhat easier to give upper
bounds;
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Theorem (VC ε-sample)

• Let F be a family of functions from a domain D into {0, 1};
• Let d be an upper bound to the VC-dimension of F ;
• Let ε ∈ (0, 1) and δ ∈ (0, 1)
• Let S be a random sample of D of size

|S| ≥ 1
ε2

(
d + ln 1

δ

)

obtained by sampling D according to a prob. distribution π
• Then

Pr
(
∃f ∈ F s.t.

∣∣∣∣∣
1
|S|
∑

s∈S
f (s)− Eπ[f ]

∣∣∣∣∣ > ε

)
< δ .

In other words: if we sample proportionally to the VC-dimension,
we can approximate all expectations with their sample averages.
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How can we prove the correctness?

We want to prove that the output {b̃(v), v ∈ V } is an
(ε, δ)-approximation

Roadmap:
1 Define betweenness centrality computation as a expectation

estimation problem (domain D, family F , distribution π)
2 Show that the algorithm efficiently samples according to π
3 Show how to efficiently compute an upper bound to the

VC-dimension
Bonus: show tightness of bound

4 Apply the VC-dimension sampling theorem
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How do we bound the VC-dimension?

Definition (Vertex-diameter)

The vertex-diameter VD(G) of G is the maximum number of
vertices in a SP of G :

VD(G) = max{|p|, p ∈ SG} .

If G is unweighted, VD(G) = ∆(G) + 1. Otherwise no relationship
Very small in social networks, even huge ones (shrinking diameter
effect)

Computing VD(G):
(
2max. edge weight
min. edge weight

)
-approximation via

single-source SP

Theorem
The VC-dimension of (SG ,F ) is at most blog2 VD(G)− 2c+ 1
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Is the bound to the VC-dimension tight?
Yes! There is a class of graphs with VC-dimension exactly
blog2 VD(G)− 2c+ 1

The Concertina Graph Class (Gi )i∈N:

v
l

vr
G
1

v
l

vr

G
2

v
l

vr

G
3

v
l

vr

G
4

Theorem
The VC-dimension of (SGi ,F ) is blog2 VD(G)− 2c+ 1 = i
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How well does the algorithm perform in practice?

It performs very well!

We tested the algorithm on real graphs (SNAP) and on artificial
Barabasi-Albert graphs, to evalue its accuracy, speed, and
scalability

Results: It blows away the exact algorithm and the
union-bound-based sampling algorithm
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How accurate is the algorithm?

In O(103) runs of the algorithm on different graphs and with
different parameters, we always had |b̃(v)− b(v)| < ε for all nodes

Actually, on average |b̃(v)− b(v)| < ε/8
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How fast is the algorithm?

Approximately 8 times faster than the simple sampling algorithm

Variable speedup w.r.t. exact algorithm (200x – 4x), depending on
ε
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How scalable is the algorithm?

Much more scalable than the simple sampling algorithm, because
the sample size does not depend on n
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ABRA: Approximating Betweennes
Centrality in Static and Dynamic
Graphs with Rademacher Averages

M. Riondato, E. Upfal

arXiv (2016)
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Issues with RK approach

• For each s − t SP computation, we only use a single SP
• a lot of wasted work!

• Must compute (upper bound to) the vertex-diameter before
we can start sampling

• Exact computation cannot be done (would be equivalent to
obtain exact betweenness)

• Approximate computation leads to larger-than-necessary
sample size
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How to solve these issues

• Design a sample scheme that uses all SPs between a sampled
pair of vertices

• Use progressive sampling, rather than static sampling
• Start from small sample size
• Check stopping condition to verify whether we sampled enough

to get a (ε, δ)-approximation
• If yes, stop, otherwise keep sampling.

How to achieve this: using Rademacher averages (VC-dimension
on steroids)
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Key ideas

• When backtracking from t to s, follow all SPs, not just one of
them, and increase the estimation of all vertices found along
the way: no wasted work;

• The stopping condition depends on:
• the richness of the vectors representing the current estimates

of the betweenness of all vertices
• the current sample size
• Formulas like this:

1
1− α min

s∈R+

1
s ln

∑

v∈VS

exp(s2‖v‖2/(2`2))+
ln 2

δ

2`α(1− α) +
√

ln 2/δ
2`

• But it works!
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Experiments
Speedup
w.r.t.

Runtime
Breakdown (%) Absolute Error (◊105)

Graph Á
Runtime

(sec.) BA RK Sampling
Stop
Cond. Other

Sample
Size

Reduction
w.r.t.

RK max avg stddev

Soc-Epinions1
Directed

|V | = 75, 879
|E| = 508, 837

0.005 483.06 1.36 2.90 99.983 0.014 0.002 110,705 2.64 70.84 0.35 1.14
0.010 124.60 5.28 3.31 99.956 0.035 0.009 28,601 2.55 129.60 0.69 2.22
0.015 57.16 11.50 4.04 99.927 0.054 0.018 13,114 2.47 198.90 0.97 3.17
0.020 32.90 19.98 5.07 99.895 0.074 0.031 7,614 2.40 303.86 1.22 4.31
0.025 21.88 30.05 6.27 99.862 0.092 0.046 5,034 2.32 223.63 1.41 5.24
0.030 16.05 40.95 7.52 99.827 0.111 0.062 3,668 2.21 382.24 1.58 6.37

P2p-Gnutella31
Directed

|V | = 62, 586
|E| = 147, 892

0.005 100.06 1.78 4.27 99.949 0.041 0.010 81,507 4.07 38.43 0.58 1.60
0.010 26.05 6.85 4.13 99.861 0.103 0.036 21,315 3.90 65.76 1.15 3.13
0.015 11.91 14.98 4.03 99.772 0.154 0.074 9,975 3.70 109.10 1.63 4.51
0.020 7.11 25.09 3.87 99.688 0.191 0.121 5,840 3.55 130.33 2.15 6.12
0.025 4.84 36.85 3.62 99.607 0.220 0.174 3,905 3.40 171.93 2.52 7.43
0.030 3.41 52.38 3.66 99.495 0.262 0.243 2,810 3.28 236.36 2.86 8.70

Email-Enron
Undirected

|V | = 36, 682
|E| = 183, 831

0.010 202.43 1.18 1.10 99.984 0.013 0.003 66,882 1.09 145.51 0.48 2.46
0.015 91.36 2.63 1.09 99.970 0.024 0.006 30,236 1.07 253.06 0.71 3.62
0.020 53.50 4.48 1.05 99.955 0.035 0.010 17,676 1.03 290.30 0.93 4.83
0.025 31.99 7.50 1.11 99.932 0.052 0.016 10,589 1.10 548.22 1.21 6.48
0.030 24.06 9.97 1.03 99.918 0.061 0.021 7,923 1.02 477.32 1.38 7.34

Cit-HepPh
Undirected

|V | = 34, 546
|E| = 421, 578

0.010 215.98 2.36 2.21 99.966 0.030 0.004 32,469 2.25 129.08 1.72 3.40
0.015 98.27 5.19 2.16 99.938 0.054 0.008 14,747 2.20 226.18 2.49 5.00
0.020 58.38 8.74 2.05 99.914 0.073 0.013 8,760 2.08 246.14 3.17 6.39
0.025 37.79 13.50 2.02 99.891 0.091 0.018 5,672 2.06 289.21 3.89 7.97
0.030 27.13 18.80 1.95 99.869 0.108 0.023 4,076 1.99 359.45 4.45 9.53

Table 2: Runtime, speedup, breakdown of runtime, sample size, reduction, and absolute error

between two nodes has many paths, ABRA-s does more work per sample than RK (which only explore a
single SP on the DAG), hence the speedup is smaller.

Runtime breakdown The main challenge in designing a stopping condition for progressive sampling
algorithm is striking the right balance between the strictness of the condition (i.e., it should stop early)
and the e�ciency in evaluating it. We now comment on the e�ciency, and will report about the strictness
in Sect. 6.2 and 6.3. In columns 6 to 8 of Table 2 we report the breakdown of the runtime into the main
components. It is evident that evaluating the stopping condition amounts to an insignificant fraction of
the runtime, and most of the time is spent in computing the samples (selection of nodes, execution of SP
algorithm, update of the bc estimations). The amount in the “Other” column corresponds to time spent
in logging and checking invariants. We can then say that our stopping condition is extremely e�cient to
evaluate, and ABRA-s is almost always doing “real” work to improve the estimation.

6.2 Sample Size and Sample Schedule
We evaluate the final sample size of ABRA-s and the performances of the “automatic” sample schedule
(Sect. 4.1.1). The results are reported in columns 9 and 10 of Table 2. As expected, the sample size grows
with Á≠2. We already commented on the fact that ABRA-s uses a sample size that is consistently (up to 4◊)
smaller than the one used by RK and how this is part of the reason why ABRA-s is much faster than RK. In
Fig. 1 we show the behavior (on P2p-Gnutella31, figures for other graphs can be found in Appendix C) of
the final sample size chosen by the automatic sample schedule in comparison with static geometric sample
schedules, i.e., schedules for which the sample size at iteration i + 1 is c times the size of the sample size
at iteration i. We can see that the automatic sample schedule is always better than the geometric ones,
sometimes significantly depending on the value of c (e.g., more than 2◊ decrease w.r.t. using c = 3 for
Á = 0.05). E�ectively this means that the automatic sample schedule really frees the end user from having
to selecting a parameter whose impact on the performances of the algorithm may be devastating (larger final
sample size implies higher runtime). Moreover, we noticed that with the automatic sample schedule ABRA-s

14

• Smaller sample sizes than RK
• Much faster (not just because using smaller sample, also

because no need to compute the vertex-diameter)
• Very accurate
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Experiments
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• More than 10x more accurate than guaranteed, on average;
• More than 100x more accurate than guaranteed, in the best

case;
• Close to the guarantee in the worst case: this is good.
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Approximation Algorithms for Dynamic Graphs
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Fully-Dynamic Approximation of
Betweenness Centrality

E. Bergamini, H. Meyerhenke

ESA: European Symposium on Algorithms (2015)
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Key ideas

This algorithm builds on:
• the RK sampling-based approximation algorithm;
• existing algorithms to update the SP DAG after an

insertion/removal of a batch of edges;

It keeps track of potential modifications to the vertex diameter to
understand whether to increase the sample size;

Theorem
After each batch update, the output is an (ε, δ)-approximation.
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Updating the DAGs

• Never change the set of sampled pairs of vertices, unless a
sample was removed or more samples are needed

• What can change is which SP is sampled: if an edge is added,
the path we sampled before may no longer be a SP.

• In any case, must save all the SP DAGs between the sampled
pair of nodes

• Requires a lot of memory, but is needed in order to be able to
update the estimation after the batch update

• The update computation builds on existing algorithms
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Keeping track of the vertex diameter

• An edge is removed: the VD may decrease, but no need to
change the sample size;

• An edge is added between two existing vertices in the same
connected component: no change in the VD, hence no change
in sample size

• An edge is added between two existing vertices in two
different connected components: the VD may have changed,
recomputation is necessary

• An edge is added between an existing vertex and a new
vertex: the VD may have increased by one, recomputation is
necessary (the model used in this paper does not actually
consider the insertion and removal of vertices)

Relying on the vertex diameter is not a great idea, that’s why we
developed ABRA, the Rademacher Averages-based algorithm.
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5. EXPERIMENTS
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Fig. 1: Speedups of DA on RK in real unweighted networks using real dynamics.

Real Random
Time [s] Speedups Time [s] Speedups

Graph |�| = 1 |�| = 1024 |�| = 1 |�| = 1024 |�| = 1 |�| = 1024 |�| = 1 |�| = 1024
repliesDigg 0.078 1.028 76.11 5.42 0.008 0.832 94.00 4.76
emailSlashdot 0.043 1.055 219.02 9.91 0.038 1.151 263.89 28.81
emailLinux 0.049 1.412 108.28 3.59 0.051 2.144 72.73 1.33
facebookPosts 0.023 1.416 527.04 9.86 0.015 1.520 745.86 8.21
emailEnron 0.368 1.279 83.59 13.66 0.203 1.640 99.45 9.39
facebookFriends 0.447 1.946 94.23 18.70 0.448 2.184 95.91 18.24
arXivCitations 0.038 0.186 2287.84 400.45 0.025 1.520 2188.70 28.81
englishWikipedia 1.078 6.735 3226.11 617.47 0.877 5.937 2833.57 703.18

Table 2: Times and speedups of DA on RK in unweighted real graphs under real
dynamics and random updates, for batch sizes of 1 and 1024.

the running times of DA and its speedups on RK with batches of size 1 and
1024 in unweighted graphs, under both real and random dynamics. Even on the
larger graphs (arXivCitations and englishWikipedia) and on large batches,
DA requires at most a few seconds to recompute the BC scores, whereas RK
requires about one hour for englishWikipedia. The results on weighted graphs
are shown in Table 3 in Section C in the Appendix. In both real dynamics and
random updates, the speedups vary between ⇡ 50 and ⇡ 6 · 103 for single-edge
updates and between ⇡ 5 and ⇡ 75 for batches of size 1024. On hyperbolic
graphs (Figure 2), the speedups of DA on RK increase with the size of the graph.
Table 4 in the Appendix contains the running times and speedups on batches of
1 and 1024 edges. The speedups vary between ⇡ 100 and ⇡ 3 ·105 for single-edge
updates and between ⇡ 3 and ⇡ 5 · 103 for batches of 1024 edges. The results
show that DA and DAW are faster than recomputation with RK in all the tested
instances, even when large batches of 1024 edges are applied to the graph. With
small batches, the algorithms are always orders of magnitude faster than RK,
often with running times of fraction of seconds or seconds compared to minutes
or hours. Such high speedups are made possible by the efficient update of the
sampled shortest paths, which limit the recomputation to the nodes that are
actually affected by the batch. Also, processing the edges in batches, we avoid
to update multiple times nodes that are affected by several edges of the batch.

10

Speedup over RK
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Fully Dynamic Betweenness
Centrality Maintenance on Massive

Networks

T. Hayashi, T. Akiba, Y. Yoshida

VLDB: Very Large Databases (2016)
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Key ideas

• Still a sampling-based approximation algorithm, but samples
pair of vertices;

• This similar to RU16, but analysis use the union bound, so
O(ε−2 log n) samples, which is a lot;

• Presents a new data structure called hypergraph sketch to
keep track of the SP DAGS.

• An additional data structure, called the Two-ball Index, allows
to identify the parts of hypergraph sketches that require
updates
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The Hypergraph Sketch

(effectively a hypergraph)
• For each sampled pair (s, t) of vertices, an hyperedge is added

to the hypergraph:

est = {(v , σsv , σv ,t) : v is on a SP from s to t}

• The estimations b̃(v) can be obtained from the sketch;
• Handling insertion and removal of edges is straightforward,

but must be done efficiently
• Handling insertion and removal of nodes requires to change

the set of sampled pair of vertices, i.e., to potentially remove
a hyperedge and insert another one;
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Vertex Operations

Algorithm 1 Vertex operations

1: procedure AddVertex(H, v)
2: Let G⌧ be obtained from G⌧�1 by adding v.
3: for each est 2 E(H) do
4: continue with probability |V⌧�1|2/|V⌧ |2.
5: Sample (s0, t0) 2 (V⌧ ⇥ V⌧ ) \ (V⌧�1 ⇥ V⌧�1).
6: Replace est by the hyperedge es0t0 made from (s0, t0).

7: procedure RemoveVertex(H, v)
8: Let G⌧ be obtained from G⌧�1 by deleting v.
9: for each est 2 E(H) do
10: if s 6= v and t 6= v then continue.
11: Sample (s0, t0) 2 V⌧ ⇥ V⌧ uniformly at random.
12: Replace est by the hyperedge es0t0 made from (s0, t0).

In words, for any ⌧ and a vertex v 2 V , the probability that
CH(v) is far apart from C⌧ (v) can be made arbitrarily small
by choosing M su�ciently large. In particular, the accuracy
of our method does not deteriorate over time.

Let S⌧ be the distribution of the set S of vertex pairs at
time ⌧ , that is, H ⇠ H⌧ is obtained by sampling S ⇠ S⌧ .
Then compute a hyperedge for each pair in S. To prove
Theorem 2, by Theorem 1, it su�ces to show that S is a
uniform distribution over the sets of M vertex pairs in V⌧ .

Proof of Theorem 2. We use the induction on ⌧ . When
⌧ = 1, the distribution S⌧ is clearly uniform from the con-
struction.

Let G⌧ be the current graph, and assume that the distri-
bution S⌧�1 is a uniform distribution over sets of M vertex
pairs in V⌧�1. Suppose that we are to modify G. When
adding or deleting an edge, we do not modify the pairs, and
hence S⌧ remains a uniform distribution. When adding or
deleting a vertex, S⌧ remains a uniform distribution from
Lemmas 3 and 4, as given below.

Lemma 3. Suppose that G⌧ = (V⌧ , E⌧ ) is obtained from
G⌧�1 = (V⌧�1, E⌧�1) by adding a vertex v, and S⌧�1 is a
uniform distribution over sets of M vertex pairs in V⌧�1.
Then, the distribution S⌧ is also a uniform distribution over
sets of M vertex pairs in V⌧ .

Proof. Since S⌧�1 is a uniform distribution, the process
of sampling S ⇠ S⌧ can be regarded as follows. Each time
we sample a pair (s, t) 2 V⌧�1 ⇥ V⌧�1 uniformly at random,
we keep it as is with probability |V⌧�1|2/|V⌧ |2, and replace it
with a pair sampled from (V⌧⇥V⌧ )\(V⌧�1⇥V⌧�1) uniformly
at random with the remaining probability. Hence, S⌧ is also
a uniform distribution.

Lemma 4. Suppose that G⌧ = (V⌧ , E⌧ ) is obtained from
G⌧�1 = (V⌧�1, E⌧�1) by deleting a vertex v, and S⌧�1 is
a uniform distribution over sets of M vertex pairs in V⌧�1.
Then, the distribution S⌧ is also a uniform distribution over
sets of M vertex pairs in V⌧ .

Proof. Since S⌧�1 is a uniform distribution, the process
of sampling S ⇠ S⌧ can be regarded as follows. Each time
we sample a pair (s, t) 2 V⌧�1 ⇥ V⌧�1 uniformly at random,
we keep it as is if (s, t) 2 V⌧ ⇥ V⌧ and replace it with a
pair sampled from V⌧ ⇥ V⌧ uniformly at random otherwise.
Hence, S⌧ is also a uniform distribution.

5. TWO-BALL INDEX
In order to compute approximate betweenness centrality

in a dynamic setting, we need to be able to update the hy-
peredge est e�ciently for each vertex pair (s, t) 2 S in the

hypergraph sketch. In this section, we describe our two-ball
index (TB-index ), which addresses this issue.

5.1 Data Structure
For each sampled vertex pair (s, t) 2 S, the hyperedge est

must be updated when the set of shortest paths from s to
t is changed by dynamic updates. Hence, quickly detecting
the change of shortest paths from s to t is important to
e�ciently update the approximate betweenness centralities.

A straightforward way of detecting the change of shortest
paths from s to t is conducting a (bidirectional) BFS from
s to t. Obviously, traversing the whole graph is ine�cient
for computing shortest paths between thousands of vertex
pairs. Another approach is to maintain the shortest path
tree (SPT) rooted at the vertex s. Several dynamic algo-
rithms [7, 20, 23] are based on variants of this approach be-
cause the incremental updates of an SPT can be processed
quickly. However, keeping thousands of SPTs on billion-
scale networks requires huge amount of space, and it is dif-
ficult to handle such networks in memory.

To achieve both high performance and scalability, we con-
struct and store data structures using balls. We define a set

of pairs
�!
B (v, dv) and

 �
B (v, dv) as follows.

�!
B (v, dv) = {(w, d(v, w)) | d(v, w)  dv}
 �
B (v, dv) = {(w, d(w, v)) | d(w, v)  dv}

These sets have important roles in our method. We describe�!
B (v, dv) and

 �
B (v, dv) balls whose centers are v and radius

are dv. The set of vertices whose distance from v is less than

or equal to dv is denoted by V (
�!
B (v, dv)). Let

�!
B (v, dv)[w] =

d(v, w) if w 2 V (
�!
B (v, dv)). Otherwise,

�!
B (v, dv)[w] = 1.

We define V (
 �
B (v, dv)) and

 �
B (v, dv)[w] in the same way as

V (
�!
B (v, dv)) and

�!
B (v, dv)[w].

Then, our data structures are as follows.

• A set �s,t = {�s(v) | v 2 P (s, t)}. Here �s(v) is sup-
posed1 to be d(s, v). This information is not needed to
estimate the betweenness centrality, but it is useful to
detect the change of shortest paths from s to t when an
edge or a vertex is deleted.

• Two sets
�!
� s and

 �
� t of vertices with distance informa-

tion, which are supposed to be the balls
�!
B (s, ds) and �

B (t, dt), respectively. Here, two non-negative integers
ds and dt satisfy ds + dt + 1 = d(s, t) � x. The values
of ds and dt are determined when the two balls are con-
structed. The newly formed shortest paths from s to t
by edge insertions are detected by using these balls.

The data structures are parameterized by a non-negative
integer x, which allows the trade-o↵ between the index size
and the update time: As the value of x increases, the in-
dex size and the update time of edge deletions decrease
whereas the update time of edge insertions increases. Two

balls
�!
B (s, ds) and

 �
B (t, dt) never overlap. When x = 0, two

balls are directly connected by an edge on a shortest path
between s and t, i.e., the distance between the two balls is
1. By increasing x, two balls become smaller, and the two
balls become distant.

1 We use the expression “supposed to be” here because,
while �s(v) usually corresponds to d(s, v), during update
procedure, �s(v) may temporarily di↵er from d(s, v).

51
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The Two-Ball Index

• For each sampled pair (s, t), maintain a triplet (∆st , β
+, β−),

where
• ∆st = {d(s, v), v is on a SP from s to t}
• The ball β+ is the set of vertices at distance less than some ds

from s, with their distances
• The ball β+ is the set of vertices at distance less than some dt

from t, with their distances
• The radiuses of the balls are such that they do not touch and

are small.
• The triplets can be built with a bidirectional SP computation

from s to t
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Update Mechanism (for insertion)

The set of triplets

I =
n

(�s,t,
�!
� s,
 �
� t) | (s, t) 2 S

o

is the TB-index for the set S of sampled vertex pairs.

The worst-case space complexity of each triplet (�s,t,
�!
� s,
 �
� t)

is O(n). However, the size of
�!
B (s, ds) and

 �
B (t, dt) tends

to be much smaller than n on real-world complex networks
in practice. This is because these networks have the small-
world property, i.e., the average distance between two ver-
tices is often O(log n) [34]. Hence the radius of two balls
ds and dt tend to be quite small. Moreover, the size of the
hyperedge est is further smaller than the size of two balls.
The compactness of the TB-index on real-world networks is
empirically shown in Section 7.

5.2 Index Construction
In this subsection, we explain how to e�ciently construct

a triplet (�s,t,
�!
� s,
 �
� t) for a fixed vertex pair (s, t). Then,

the construction of I is simply performed by computing the
triplet for each sampled vertex pair (s, t) 2 S. This pro-
cedure is used when we start dealing with a new dynamic
graph, as well as when sampled pairs are changed due to
vertex addition and removal (see Section 4.2).

First, two balls
�!
B (s, ds) and

 �
B (t, dt) are computed based

on bidirectional BFS. We initialize ds and dt to be zero.

Then, as long as
�!
B (s, ds) and

 �
B (t, dt) share no vertex, we

increment ds if the size of
�!
B (s, ds) is smaller than that of �

B (t, dt), and increment dt otherwise. Then, we set
�!
� s =�!

B (s, ds) and
 �
� t =

 �
B (t, dt). If we find

�!
B (s, ds + 1) =�!

B (s, ds) or
 �
B (t, dt +1) =

 �
B (t, dt) along the way, then there

is no path from s to t. In this case, we simply set
�!
� s =

�!
� t =

; to save space.

When we find that
�!
B (s, ds) and

 �
B (t, dt) share a vertex,

the vertex set P (s, t) is computed by using
�!
B (s, ds) and �

B (t, dt) . Let C = V (
�!
B (s, ds)) \ V (

 �
B (t, dt)) be the set

of shared vertices. Let Ps and Pt be the set of vertices on
the shortest paths from s to C and the shortest paths from
C to t, respectively. Note that P (s, t) equals Ps [ Pt [ C,
because C = {v 2 P (s, t) | d(s, v) = ds} and every shortest
path from s to t passes through C. Two vertex sets Ps and
Pt can be easily obtained by conducting BFSes from C to s
and t. After the vertex set P (s, t) is obtained, we decrease
the radius ds and dt one by one as long as ds + dt + 1 >
d(s, t) � x holds in order to save space. More specifically,
in each iteration, the radius of the larger ball is decreased.
Finally, the set �s,t is computed by conducting a BFS on

P (s, t) (when
�!
� s and

 �
� t are empty, we simply set �s,t = ;

to save the space). Since the number of vertices in P (s, t) is
much smaller than n, the BFS on P (s, t) can be conducted
quickly. Similarly, we update the distance information in est

by conducting BFSes on P (s, t).

Since the sizes of P (s, t) and the two balls
�!
B (s, ds) and �

B (t, dt) are often much smaller than n on real-world net-
works, we use hash tables to keep �(s, v) and �(v, t) for each

v 2 V (est),
�!
� s[v] for each v 2 V (

�!
� s), and

 �
� t[v] for each

v 2 V (
 �
� t) in order to save the space. As with balls,

�!
� s[v]

denotes d(s, v), which is stored in the hash table.

Algorithm 2 Update
�!
B (s, ds) after edge (u, v) is inserted

1: procedure InsertEdgeIntoBall(u, v,
�!
� s)

2: Q An empty FIFO queue.

3: if
�!
� s[v] >

�!
� s[u] + 1 then

4:
�!
� s[v] �!� s[u] + 1; Q.push(v).

5: while not Q.empty() do
6: v  Q.pop().

7: if
�!
� s[v] = ds then continue.

8: for each (v, c) 2 E do

9: if
�!
� s[c] >

�!
� s[v] + 1 then

10:
�!
� s[c] 

�!
� s[v] + 1; Q.push(c).

5.3 Incremental Update
In this subsection, we present how to e�ciently update

each triplet (�s,t,
�!
� s,
 �
� t) in the TB-index as well as the hy-

peredge est when the graph is dynamically updated. Through-
out this section, ⌧ denotes the latest time.

5.3.1 Edge Insertion
Suppose that an edge (u, v) is inserted. Two balls

�!
� s

and
 �
� t are updated first; then, we update �s,t and the

hyperedge est. The value of ds and dt are not modified
although we may have a new shortest path between s and t.

Algorithm 2 shows the pseudo-code for updating each ball
after edge insertion. Balls are updated in a similar manner
as in the case of previous methods for maintaining SPTs [1,

17, 33]. In the case that
�!
� s[u] + 1 <

�!
� s[v], the distance

from s to v becomes smaller by passing through the new

edge (u, v), and
�!
� s[v] is updated to

�!
� s[u] + 1. Then we

recursively examine out-neighbors of v. In other words, the

ball
�!
� s is updated by conducting a BFS from v on vertices

whose distance from s is at most ds. The ball
 �
� t is updated

in the same manner as above.
The set �s,t is updated by using the updated balls

�!
� s =�!

B ⌧ (s, ds) and
 �
� t =

 �
B ⌧ (t, dt). The change of �s,t occurs

when new shortest paths are formed by adding (u, v). To
quickly detect newly formed shortest paths, two more balls �
B ⌧ (u, du) and

�!
B ⌧ (v, dv) are used. The radii of two balls

du and dv are initialized to zero. The radius of
 �
B ⌧ (u, du)

is increased one by one by conducting a BFS from u while�!
B ⌧ (s, ds) and

 �
B ⌧ (u, du) share no vertex, and the radius of�!

B ⌧ (v, dv) is increased one by one as long as
�!
B ⌧ (v, dv) and �

B ⌧ (t, dt) share no vertex. However, if vertices u and v are
distant from vertices s and t, a large part of the graph might

be visited before the whole
 �
B ⌧ (u, du) and

�!
B ⌧ (v, dv) are ob-

tained even when there is no newly formed shortest paths
passing through the edge (u, v). To avoid such an unneces-
sary computation, we carefully introduce upper bounds ru

and rv on du and dv, respectively, and stop BFSes when the
radii reach these upper bounds. We consider the following
four cases:

1. The case where u 2 V (
�!
B ⌧ (s, ds)) and v 2 V (

 �
B ⌧ (t, dt)):

In this case, we can immediately detect that a new short-
est path from s to t is formed.

2. The case where u 2 V (
�!
B ⌧ (s, ds)) and v 62 V (

 �
B ⌧ (t, dt)):

In this case, we already know that d(s, u) =
�!
B ⌧ (s, ds)[u] =�!

� s[u]. Thus, the following lemma holds.
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Experiments

Table 1: Information of datasets. The average de-
gree and average distance are denoted by d and D,
respectively.

Dataset Type n m d D

HepPh social(d) 35K 422K 12.2 11.7
Enron social(u) 37K 368K 10.0 4.0
Slashdot0811 social(d) 77K 905K 11.7 4.1
Pokec social(d) 1.6M 31M 18.8 5.3
LiveJournal social(d) 4.8M 69M 14.2 5.9
Orkut social(u) 3.1M 117M 38.1 4.2
twitter-2010 social(d) 42M 1.5B 35.3 4.5
Friendster social(u) 66M 1.8B 27.5 5.0

NotreDame web(d) 326K 1.5M 4.6 11.4
Google web(d) 876K 5.1M 5.8 11.7
BerkStan web(d) 685K 7.6M 11.1 13.7
in-2004 web(d) 1.4M 17M 12.2 15.3
indochina-2004 web(d) 7.4M 194M 26.2 15.7
it-2004 web(d) 41M 1.2B 27.9 15.0
uk-2007 web(d) 106M 3.7B 35.3 15.4

the maximum average construction time among x = 0, 1, 2
is reported.

The index can be constructed in about 40 minutes for
Friendster, which is the largest social networks used in our
experiments. On other networks, our index can be con-
structed in 15 minutes. Thus, the construction time of our
index is highly e�cient in comparison with the computation
time of exact betweenness centrality.

7.2 Data Structure Size
The total index size of our method and the average size of

data structures stored to support e�cient updates of each
hyperedge are listed in Table 3. We also report the memory
usage for naturally representing each graph, i.e., each edge
appears twice in forward and backward adjacency lists, and
represented by four-byte integers.

As shown in Table 3, we successfully constructed indices
on both billion-scale social networks and web graphs. Espe-
cially on uk-2007, which is the largest network used in our
experiments, the index size becomes smaller than the orig-
inal graph size. In comparison with the index of BMS, our
index is 20 times smaller on all datasets even when x = 0.

We can see that the size of data structures for each sam-
pled vertex pair in our method is several orders of magnitude
smaller than the size of each SPT stored in BMS. This in-
dicates the high scalability of our method with regard to
hyperedges. For example, even if we increase the number of
hyperedges M from 1,000 to 10,000, the index size of our
method on uk-2007 would be smaller than 60 GB. As shown
in Table 3, we can further reduce the data size for each hy-
peredge by increasing the parameter x. Especially on social
networks, it becomes 10 times smaller by increasing x from
zero to two, which have a great impact when M is large.

7.3 Update Time
Average update times for insertions and deletions of edges

and vertices are also listed in Table 2. As shown in the
table, each edge insertion is processed in two milliseconds
on almost all datasets when x = 0. This processing time
is three orders of magnitude faster than full re-computation
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Figure 2: The processing time of batch updates.

time of the index. It can also be seen from Table 2 that
the edge insertion time increases as the parameter x gets
larger. This bears the trade-o↵ of the index size and the
edge insertion time.

The average edge deletion time is less than one millisecond
on all datasets when x = 0. Moreover, when we increase the
parameter x, the edge deletion time becomes even faster.
This is because deleted edges a↵ect balls less often when
the balls are small.

Vertex insertion/deletion times are also shown in Table 2.
Since the update times for vertex insertions and deletions are
not strongly a↵ected by the value of the trade-o↵ parameter
x, the maximum average update time among x = 0, 1, 2 is
reported.

Vertex insertion time ranges from 0.1 milliseconds to 35.0
milliseconds. Vertex deletion time ranges from 0.2 millisec-
onds to 7.3 milliseconds. Although these update times are
slower than edge insertion/deletion times, this performance
is acceptable because the number of vertex operations tends
to be fewer than the number of edge operations.

Batch Update. As BMS can gain update speed by han-
dling multiple edge insertions as a batch, we also evaluated
the insertion time when multiple edges are inserted at once
and handled as batches. In this experiment, our method still
processes each edge insertion one by one. Figure 2 shows the
insertion time per edge for di↵erent sizes of batches of mul-
tiple edge insertion. The results of our method with x = 2
are not shown because the processing time is slower than the
single edge update of BMS. The processing time for a single
edge update of our method with x = 0 is at least five times
faster than that of BMS. Even when the size of a batch is
1,024, on social networks, the processing time per edge of
our method is still faster than that of BMS.

7.4 Parameter M and Accuracy
We compared the accuracy of our method and BMS un-

der various number of samples M . We used BMS only since
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Summary on approximation algorithms for
betweenness

• Sampling Rules Everything Around Me;
• Work on pushing down the amount of needed sampling is

important;
• Progressive sampling frees us from many worries, but it is

challenging;
• Fast and memory efficient data structures are needed to be

able to update the estimations fast in dynamic graphs, where
approximation is most useful;

• Developing hybrid estimators?
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Conclusions
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What we presented

• Brief survey of the most common measures of centrality
• Axioms for centrality
• Focusing on closeness and betweenness centrality:

• exact algorithms on static graphs (GPU-based)
• exact algorithms on dynamic graphs (streaming, distributed)
• approximation algorithms for static graphs
• approximation algorithms for dynamic graphs

In each of the above, there are important open questions and
directions for future work.
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Big Graphs

• “Big Data” is a lot of hype and refers to very different things
depending on the context.

• However, the unprecedented volume, velocity, and variety
pose real algorithmic challenges, especially when dealing with
expressive and complex representations such as graphs.

• Challenges are opportunities for researchers!
• Big graphs require new algorithms
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Volume requires new algorithms

• Classic computational complexity:
• Is there a polynomial time exact algorithm →? Go for it!
• Your problem is NP-Hard → better think about approximation

algorithms. . .
• Classic computational complexity: polynomial = feasible
• But is polynomial time really feasible?

• E.g., Brandes algorithm not feasible for n = 109

• On big graphs quadratic time is as bad as NP-Hard
• New, finer-grain, complexity theory needed (?)

• Need for massively parallel algorithms, out-of-core algorithms,
sublinear algorithms, approximated algorithms, randomized
algorithms, etc.
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Velocity requires new algorithms

• The velocity with which new data keeps arriving. . .
• . . . and the velocity with which the information of interest

keeps changing.

• In the case of graphs new edges are formed and old edges
might disappear at very high speed.

• How to maintain the centrality score of all vertices
continuously updated?

• Velocity requires streaming algorithms that only read each
data point once (or a few time), specialized small-space data
structures (sketches) that maintain basic statistics and can be
updated on-the-fly, algorithms which are robust to changes in
the data, etc.
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Variety requires new algorithms
• Variety refers to the richness of different information types to

be mixed in the analysis.
• Examples in graphs:

• Vertices have attributes;
• Vertices are spatio-temporally localized and keeps moving;
• Edges have types (colors);
• Edges have multiple types (a.k.a. multigraphs, multiplex

networks, multidimensional networks, etc.);
• Each edge has associated a time series representing the amount

of communication (or activity) along the edge per time unit;
• ...

• Semantic richness in the data implies complexity in the
knowledge we can extract.

• Applications involving “multi-structured” data require the
definition of new, ad-hoc, model and patterns . . .

• . . . and of course, the algorithms to extract them,
• and these new algorithms need to be able to deal with the

volume and the velocity!
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Big Graphs

• The computational complexity of most existing graph
algorithms makes them impractical in today’s networks, which
are:

• massive,
• information-rich, and
• dynamic.

• In order to scale graph analysis to real-world applications and
to keep up with their highly dynamic nature, we need to
devise new approaches specifically tailored for modern parallel
stream processing engines that run on clusters of
shared-nothing commodity hardware.
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Thank you!
Francesco Bonchi

http://francescobonchi.com
@FrancescoBonchi

Gianmarco De Francisci Morales
http://gdfm.me

@gdfm7

Matteo Riondato
http://matteo.rionda.to

@teorionda

Slides available at
http://matteo.rionda.to/centrtutorial/
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