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ABSTRACT

We present SPuManTE, an efficient algorithm for mining signif-
icant patterns from a transactional dataset. SPuManTE controls
the Family-wise Error Rate: it ensures that the probability of re-
porting one or more false discoveries is less than an user-specified
threshold. A key ingredient of SPuManTE is ut, our novel uncon-
ditional statistical test for evaluating the significance of a pattern,
that requires fewer assumptions on the data generation process and
is more appropriate for a knowledge discovery setting than clas-
sical conditional tests, such as the widely used Fisher’s exact test.
Computational requirements have limited the use of unconditional
tests in significant pattern discovery, but ut overcomes this issue
by obtaining the required probabilities in a novel efficient way. SP-
uManTE combines ut with recent results on the supremum of the
deviations of pattern frequencies from their expectations, founded
in statistical learning theory. This combination allows SPuManTE
to be very efficient, while also enjoying high statistical power. The
results of our experimental evaluation show that SPuManTE allows
the discovery of statistically significant patterns while properly ac-
counting for uncertainties in patterns’ frequencies due to the data
generation process.
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•Mathematics of computing→ Contingency table analysis;
• Information systems→ Data mining.
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1 INTRODUCTION

Significant Pattern Mining [10] is a variant of Frequent Pattern Min-

ing [1], in which transactions have binary class labels and the
objective is to identify patterns with a statistically significant asso-

ciation with one of the two labels. This task finds applications in a
wide range of domains where finding reliable associations is crucial,
such as market basket analysis, social networks, and molecular
medicine. Significant patterns supply different information than
frequent ones (i.e., those appearing in a fraction at least θ of all the
transactions of a dataset), providing important insights in many
applications: for example, in molecular medicine, they underscore
the molecular features that distinguish two groups of patients (e.g.,
responsive to therapy vs. unresponsive).

The significance of a pattern is commonly assessed through sta-

tistical hypothesis testing: a statistical test is used to obtain a p-value
that quantifies the probability that the association observed in the
data is due to chance. The most commonly used test to assess the
association of a pattern with class labels is Fisher’s exact test [8].
Fisher’s test is a conditional test: it assumes that the data generat-
ing process only produces datasets in which both the number of
transactions in each class and the number of transactions in which
the pattern appears are the same as in the observed dataset, i.e., it
conditions on the observed variables of interest.

In contrast, unconditional tests such as Barnard’s exact test [2] as-
sume that the frequency of the pattern observed in the real dataset is
(the realization of) a random variable. Unconditional tests therefore
assess the association between a pattern and class labels consider-
ing also scenarios (i.e., datasets) where the frequency of the pattern
is different from what is observed in the real data. The computation
of the p-value for unconditional tests is usually more expensive
than for conditional tests, since one needs to explore the space
of the possible values for nuisance parameters describing the (un-
known) values of the underlying process that generated the data.
In significant pattern mining, the nuisance parameter of a pattern
is the probability that it appears in a transaction generated by the
underlying process.

Conditional tests and unconditional tests are based on different
assumptions regarding how data is generated and collected, namely,
whether the variables of interests (e.g., patterns frequencies) would
be the same in a different repetition of the experiment (conditional
tests) or not (unconditional tests). To understand when the two
situations arise, consider for example the study of the appearance of
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Figure 1: p-values from Fisher’s test (conditional) and

Barnard’s tests (unconditional) vs. exact p-values under the
unconditional null hypothesis. p-values of both tests are dis-

played for all contingency tables with n = 104, n1/n = 0.25,
f (S) = 0.1, and σ1(S) ∈ [0,σ (S)] (see Sect. 3 for parameters’

definitions) and exact p-value ≥ 10−10. The diagonal black

line corresponds to a test p-value equal to the exact p-value.
The p-values from Fisher’s test are smaller than the exact

p-values for many table (the values on the axes decrease to-
ward the right and upwards) and may lead to different con-

clusions (i.e., declaring a pattern as significantwhen it is not)

and to a FWER higher than expected.

(behavioral) patterns (e.g., posting information regarding a specific
topic) in members of two online communities (defining the two
classes). When deciding to collect the data (e.g., whether a user
posted information on the topic or not), you may decide to stop
once enough members (overall) have posted about the topic. In
this case the assumption of conditional tests are met, since every
repetition of the experiment would result in the exact same number
of appearances of the pattern. In a different situation one may
instead decide to collect data for a fixed amount of time: the number
of times the pattern appears is, thus, not fixed, and would change
among repetitions of the experiment. In this scenario, unconditional
tests better reflect the process with which data is generated and
collected.

In data mining, the latter scenario is far more common and
natural than the former: data is collected from two different groups
or conditions for some amount of time, and then the data is analyzed.
However, conditional tests such as Fisher’s are commonly employed
in such scenarios. The difference between using conditional and
unconditional tests is usually small when testing the significance
of a single pattern S : in this case one can flag S as significant if its
p-value is below a fixed threshold α with the guarantee that this
corresponds to a false discovery (i.e., reporting S as significant when
it is not) is bounded by α .

The situation is dramatically different in significant pattern min-
ing, where a huge number of patterns appearing in the datasets
are tested, resulting in a multiple hypothesis testing problem. In this
case, if one testsm patterns, the expected number of patterns with
p-values below α ismα even when no pattern is significant.

Several methods have been proposed to deal with multiple hy-
pothesis testing [3, 5, 30]. These tests provide various guarantees,

among which the most commonly considered are guarantees on
the probability of one or more false discoveries, called Family-Wise
Error Rate (FWER), and they all require a pattern to have very small
p-value in order to be flagged as significant. For patterns with very
small p-values, conditional tests and unconditional tests display
strikingly different p-values (Fig. 1). In particular, Fisher’s exact test
produces p-values much lower than the exact p-value when there is
no association between patterns and class labels, that may results
in a much higher FWER than expected.

To the best of our knowledge, no practical method to identify
significant patterns with unconditional testing exists.

Contributions. We present SPuManTE, the first efficient algo-
rithm for mining significant patterns without conditioning on the
observed values of the pattern frequencies and while controlling
the FWER. In detail, our contributions are the following.
• At the core of SPuManTE is ut, our novel unconditional sta-
tistical test for the significance of a single pattern. ut, being
unconditional, is more appropriate for significant pattern
mining. ut is, to our knowledge, the first computationally
efficient unconditional test. To achieve this efficiency, it com-
bines confidence intervals for the expected frequency of the
pattern, with deep insights on the computation of bounds
on the p-value, and a smart strategy to explore the space
of contingency tables. ut’s usefulness extends beyond its
employment in SPuManTE, and may find applications in
other significant pattern mining problems.
• SPuManTE controls the FWER at level α , for an user-speci-
fied α ∈ (0, 1). To achieve this goal, we develop an efficient
way to compute a lower bound to the p-value for ut, and
use it by adapting the strategy used in lamp [25]. SPuMan-
TE uses ut in combination with recently developed bounds
on the maximum deviation of the observed frequency of a
pattern from its expectation that hold simultaneously over
all patterns [20], rather than having to expensively compute
a different confidence interval for each pattern. To the best
of our knowledge SPuManTE is the first algorithm in which
such uniform bounds have been used, andwe believe that this
approach could be applied to other methods for significant
pattern mining.
• We evaluate SPuManTE on real datasets and compare its per-
formance with the state-of-the-art method lamp [25], based
on Fisher’s exact test. The results show that SPuManTE has
high statistical power and is faster than lamp in particular
for large datasets, due to the high number of patterns that do
not require the explicit computation of the p-value but can
be flagged as significant based on the confidence intervals
alone.

2 RELATEDWORK

Our work focuses on significant pattern mining [10]. We develop
a significant pattern mining algorithm (called SPuManTE) that
controls the FWER while maintaining high statistical power, and
uses a novel unconditional test.

Controlling the FWER can be done with classical statistical tools
such as the Bonferroni’s method, or its refinements [12]. This ap-
proach has been proposed in many previous works on significant
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pattern mining [27–29]. These methods exhibit limited statistical
power, because of the very large number of associations being
tested. For this reason, SPuManTE does not use classical statistical
approaches for the control of the FWER. Instead, SPuManTE uses
a strategy similar to the one proposed in lamp [17, 25], a recently-
introduced method for achieving higher statistical power while
controlling the FWER. lamp is designed for the Fisher’s exact test,
which is a conditional. SPuManTE uses a significance-level-search
strategy similar to the one in lamp, modified to be appropriate for
our novel test ut, which is unconditional and, as argued in Sect. 1,
more appropriate for the significant pattern mining setting.

Other works [15, 19, 24] use the Westfall-Young permutation
test [30], that is more powerful than lamp but also more computa-
tionally expensive. Our novel unconditional test ut can be used in
combination with the Westfall-Young permutation testing as well.

Barnard’s test [2] is an unconditional exact test to assess the
statistical significance of associations from a 2×2 contingency table.
Compared to Fisher’s test [8], it offers more statistical power [4, 6,
16], and it only requires conditioning on one set of marginals of
the contingency tables, rather than two as Fisher’s. The popularity
of Barnard’s test was hindered partially by Fisher’s criticism, and
partially by the excessive computational cost required by naïve
implementations of the test. We do not enter the debate on which
of the two tests to use [7], but our results suggest that uncondi-
tional tests like Barnard’s exact test may be more appropriate for
significant pattern mining. Rather, our work focuses on the compu-
tational aspects, and specifically in how to speed up the execution
of the test. Our work is similar, in spirit, to that of Hämäläinen [9],
who studied computationally efficient upper bounds to the p-value
of Fisher’s test. Differences between the two statistical tests may
become significant for small p-values (see Fig. 1), and thus become
important in the multiple hypothesis testing scenario where they
may lead to a lack of control on the FWER. Vandin et al. [26] ob-
served such lack of control for the log-rank test. To the best of
our knowledge our work is the first time that the observation is
reported for Fisher’s exact test (see Fig. 1).

We study the fundamental task of significant pattern mining,
but extensions to this settings are possible and have been studied.
Komiyama et al. [13] look at emerging patterns that significantly
differ between two databases. Papaxanthos et al. [18] and Terada
et al. [23] present methods to mine significant patterns in the pres-
ence of confounding variables and covariates, while Sugiyama et al.
[21] focuses on mining significant subgraphs from networks, and
He et al. [11] look at the extraction of significant sequential patterns.
We believe our method can be extended to these other settings and
we will study these extensions in the future.

3 PRELIMINARIES

Let I be an alphabet of ordered items, and let {ℓ0, ℓ1} be two
(class) labels, i.e., items that do not belong to I. A dataset D =

{(t1, ℓ1), (t2, ℓ2), . . . , (tn, ℓn )} is a multiset of |D| = n pairs (ti , ℓi )
where ti ⊆ I is a transaction, and ℓi ∈ {ℓ0, ℓ1} is a label, for
1 ≤ i ≤ n. The multiset of the first elements of the pairs in D is
naturally partitioned into two multisetsZ0 andZ1, whereZi con-
tains all and only the first elements of the pairs in D with second
element ℓi , for i ∈ {0, 1}. We define ni = |Zi |, with n1 + n0 = n.

Variables S ⊆ t S ⊈ t Row totals

t ∈ Z1 σ1(S) n1 − σ1(S) n1

t ∈ Z0 σ0(S) n0 − σ0(S) n0

Column totals σ (S) n − σ (S) n

Table 1: 2×2 contingency table summarizing the appearance

of the pattern S inZ0
andZ1

.

A pattern (or itemset) S is a set of items, S ⊆ I. We say that
S appears in a transaction t if S ⊆ t , and say that t contains S .
The support σi (S) (resp. frequency fi (S)) of S inZi is the number

(resp. fraction) of transactions inZi that contain S , for i ∈ {0, 1}.
With a slight abuse of notation, we denote as σ (S) (resp. f (S))
the number (resp. fraction) of transactions in the pairs of D that
contain S . Thus, fi (S) = σi (S)/ni , i ∈ {0, 1}, and f (S) = σ (S)/n.
For any pattern S , these quantities (and their complements) are
summarized in a 2×2 contingency table such as the one in Table 1.1
We conveniently define the quantities qσi ,x = max{0,ni − (n − x)}
and σ̂i ,x = min{ni , x}, that define the range [qσi ,x , σ̂i ,x ] of the
admissible values of σi (S) for any S with σ (S) = x .

In significant pattern mining, the dataset D is assumed to be
the outcome of a stochastic process that generates sets of pairs
(t, λ). Different assumptions can be made on this process (details in
Sect. 3.1 and 3.2). Independently on the assumptions, for any pattern
S ⊆ I, we let πS ,i be the probability that a pair (t, λ) generated by
the process is such that S ⊆ t and λ = ℓi , for i ∈ {0, 1}.

The key task in significant pattern mining is to identify the
patterns that exhibit a significant association with one of the two
labels, i.e., for which πS ,0 , πS ,1. Given a single pattern S , assessing
the statistical significance of an association corresponds to using
the observed contingency table for S to evaluate whether it supports
the null hypothesis HS : πS ,0 = πS ,1, i.e., whether the observed data
D is likely to have been generated from a process satisfying HS .

All available information about S is contained in the contingency
table, thus we cannot be deterministically certain in our assessment
of the significance of the association of S with one label: due to the
randomness involved in the data generation process, there is the
possibility of flagging the association as significant when it is not,
i.e., of making a false discovery.

The assessment of whether the null hypothesis for S is supported
by the observed contingency table for S involves computing a p-
value pS . This quantity is defined as the probability, w.r.t. the data
generating distribution and under the assumption that the null
hypothesis is true, of observing a contingency table for S that is
as or more extreme (i.e., has equal or lower probability of being
observed) than the one that is actually observed. The set of more
extreme contingency tables and the probability associated with each
of them depend on the conditions imposed on the data generation
process (details in Sect. 3.1 and 3.2).

No matter what the conditions are, once the value of pS or an
upper bound to it is known, rejecting the null hypothesis HS , i.e.,
flagging the pattern S as having a significant association with one
of the two labels iff pS ≤ δ ensures that the probability (w.r.t. the
1The “2×2” attribute refers to the four central cells of the table, which contain the
actual information about the pattern S .
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randomness in the generating process) that S is a false discovery is
not greater than δ ∈ (0, 1).

3.1 Conditional testing

Let’s focus for now on a single pattern S ⊆ I. A set of conditions
commonly imposed on the data generating process, made for ex-
ample by the widely-used Fisher’s exact test [8], is to condition on

all values in the marginals (i.e., in the bottom row and rightmost
column) of the observed contingency table for S : the space of possi-
ble contingency tables for S contains all and only those with the
same values for n, n1 (thus n0), and σ (S), as in the observed one.

Under these conditions and assuming that the null hypothesis
HS is true, the quantity σ1(S) follows a hypergeometric distribution:
given x = σ (S) and a ∈ [qσ1,x , σ̂1,x ], the probability PF(a) (the F
stands for “Fisher”) of observing a contingency table for S where
σ1(S) = a is

PF(a) =

(n1
a
) ( n0
σ (S )−a

)( n
σ (S )

) .

Let b be the value for σ1(S) in the observed contingency table for S ,
the p-value pFS is then

pFS (b) =
∑

a : P F(a)≤P F(b)

PF(a) . (1)

Drawbacks. Imposing on the generative process the conditions
we just described may be reasonable when only considering a sin-
gle pattern S . In the significant pattern mining setting, the space
of possible patterns is the powerset of I. Since there is a single
generative process, one would have to impose on it that, for each S
of the 2 |I | possible patterns, the generative process only generates
contingency tables for S with the observed value of σ (S). Imposing
such a large number of conditions seems excessively restrictive.

3.2 Unconditional testing

A more reasonable set of conditions is to consider only n and n1
(and thus n0) fixed as in the observed dataset. These quantities
are characteristics of the observed dataset, and much more readily
accessible than the observed frequencies (in D) of any of the pat-
terns. With a somewhat unfortunate name choice, tests that impose
such conditions, e.g., Barnard’s (exact) test [2], are known as un-
conditional tests. For a pattern S , the space of possible contingency
tables contains all and only those with the same values for n and
n1 (thus n0), as in the observed one. The value for σ (S) is not fixed,
hence not known a priori. This set of assumptions is much more
reasonable for the significant pattern mining setting, where the
value of σ (S) for each pattern S is unknown and must be obtained
by running a pattern mining algorithm on the dataset.

To define the p-value for S we need to first introduce the concept
of the nuisance parameter π ∈ [0, 1]. The nuisance parameter is
the assumed value for πS ,0 and πS ,1 under the null hypothesis that
these quantities are equal.

Under the above conditions, and assuming that the null hypothe-
sisHS is true, and a fixed, known value for the nuisance parameter π ,
the probability of observing a contingency table for S with σ (S) = x

and σ1(S) = a, for x ∈ [0,n], and a ∈ [qσ1,x , σ̂1,x ], is

P(x,a | π ) =

(
n0

x − a

) (
n1
a

)
πx (1 − π )(n−x ) .

For y ∈ [0,n], b ∈ [qσ1,y , σ̂1,y ], and π ∈ (0, 1), define T (y,b, π ) as
the set of pairs (x,a) such that P(x,a | π ) ≤ P(y,b | π ) and define
the function

ϕ(y,b, π ) =
∑

(x ,a)∈T (y,b ,π )

P(x,a | π ) .

The value ϕ(y,b, π ) is the probability, under the null hypothesis
πS ,0 = πS ,1 and for a fixed value π of the nuisance parameter, to
observe a contingency table as or more extreme than the one with
σ (S) = y, σ1(S) = b, and σ0(S) = y − b (see Table 1).

To obtain the actual p-value for a pattern S or an upper bound
to it (sufficient to perform the test), it is necessary to eliminate
the dependency on nuisance parameter π . For example, Barnard’s
test [2] uses as upper bound pBS the maximum of ϕ(σ (S),σ1(S), π )
over all values of π ∈ (0, 1):

pBS = max {ϕ(σ (S),σ1(S), π ), 0 ≤ π ≤ 1} . (2)

Finding this maximum is computationally expensive. One of our
goals is designing an unconditional test with an upper bound to
the p-value that is efficient to compute (see Sect. 4.1).

3.3 Multiple hypothesis testing and lamp

When a single pattern S is tested, flagging it as significant when
its p-value is smaller than a significance threshold δ ∈ [0, 1], fixed
a priori, guarantees that the probability of a false discovery (i.e.,
reporting S as significant when it is not) is bounded by δ . If such
approach is followed when testing h > 1 patterns (i.e., multiple

hypotheses), the expected number of false discoveries could be as
large as δh. As h grows large, as is typically the case for significant
pattern mining, the probability of having at least one (and possibly
many) false discovery also grows. An appropriate multiple hypoth-

esis testing correction of the significance threshold used for testing
each individual pattern is needed to ensure a low probability of
false discoveries.

One common approach is to perform such a correction to bound
the Family-Wise Error Rate FWER, i.e., the probability of reporting
at least one false discovery, where the sample space is the set of
possible datasets generated by the underlying process.

For a given δ ∈ [0, 1], using δ as the significance threshold for
each test, i.e., rejecting all null hypotheses with p-value ≤ δ would
lead to a FWER FWER(δ ). In most cases it is not possible to derive
a closed formula for FWER; a more tractable and desirable inverse
approach allows to obtain, given an acceptable-FWER threshold
α ∈ (0, 1], a so-called corrected significance threshold δ to use in
each test in order to have FWER(δ ) ≤ α . A simple, but conservative,
way to set δ is the Bonferroni’s correction [5]: given α , use δ =
α/h to guarantee that FWER(δ ) ≤ hδ = α . The problem with
Bonferroni’s correction is that, for large h, δ is close to 0, resulting
in low statistical power, i.e., many actually significant patterns are
not flagged as such [27–29]. More sophisticated techniques have
been devised to obtain higher statistical power while keeping the
FWER at most α . Tarone [22] introduces the notion of minimum

attainable (min. att.) p-value: if we use a corrected significance
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threshold δ , patterns whose min. att. p-value is greater than δ ,
called untestable, do not need to be counted among the h to be
tested, thus should not be considered in the computation of δ with
the Bonferroni’s correction. Defining k(δ ) as the number of patterns
with min. att. p-value ≤ δ , the corrected significance threshold can
be obtained as δ = α/k(δ ).

Terada et al. [25] present lamp, a significant pattern mining
algorithm that uses the concept of min. att. p-value for Fisher’s
exact test: for a given pattern S , its p-value pS can be expressed as
a function of σ1(S) only (see (1)). Since the set of possible values of
σ1(S) for σ (S) = x is [qσ1,x , σ̂1,x ], the min. att. p-valueψ (S) is

ψ L(S) = min
{
pFS (a),a ∈ [qσ1,x , σ̂1,x ]

}
.

For a candidate corrected significance threshold δ , if ψ L(S) > δ
the pattern S will never be flagged as significant and is therefore
untestable. In order to use themin. attp-value in a significant pattern
mining setting, Terada et al. [25] introduce an easy-to-compute
lower bound qψ L(S) toψ L(S) (assuming w.l.o.g. that n1 ≤ n0):

qψ L(S) =

{
ψ L(S) if 0 ≤ σ (S) ≤ n1
1/

( n
n1

)
if n1 < σ (S) ≤ n

which is monotonically non-increasing in the support of S . Since n
and n1 are fixed by the dataset, qψ L(S) depends only on the support
σ (S) of S , that is, qψ L(S) is a function д(σS ) of σS . Therefore the
number k(δ ) of patterns with min. att. p-value ≤ δ is equal to the
number of patterns k(σδ ) with support at least σδ . lamp employs
the lower bound qψ L(S) to efficiently explore the lattice of closed
patterns in order to identify the maximum value of the support σmax
such that д(σmax − 1) > α/k(σmax − 1) while д(σmax) ≤ α/k(σmax).

To identify a suitable significance thresold δ∗, SPuManTE em-
ploys a strategy similar to the one in lamp, but uses a new uncon-
ditional test (see Sect. 4.1), thus requiring the development of an
efficiently computable lower bound to the min. att. p-value for a
pattern S using such test (Sect. 4.2.2).

4 SIGNIFICANT PATTERN MININGWITH

UNCONDITIONAL TESTING

We now describe SPuManTE, our algorithm for significant pattern
mining with unconditional testing. We start by introducing ut, a
novel Unconditional Test that is based on confidence intervals for
the expected frequencies of the patterns. Due to space constraints,
some of our proofs are presented in the Appendix.

4.1 The ut test

Let S be a pattern of which we are assessing the association with
the labels. Our novel Unconditional Test ut assumes to know two
confidence intervalsC0(S) andC1(S), for πS ,0 and πS ,1, respectively,
s.t. the event ES=“πS ,0 ∈ C0(S) and πS ,1 ∈ C1(S)” holds with prob-
ability 1 − γ (over the randomness in the data generation process).
We discuss in Sect. 4.2.1 how such confidence intervals can be ob-
tained simultaneously for all patterns S . Let the interval C(S) be
C(S) = C0(S) ∩C1(S). We define the p-value pS conditioned on the
event ES as

pS =

{
0 if C(S) = ∅
max{ϕ(σ (S),σ1(S), π ), π ∈ C(S)} othw.

.

This p-value should be compared with the one from (2). The p-value
pS is a conditional probability: it is the probability of observing
contingency tables at least as extreme as the one seen in the dataset
conditioning on the event ES . This conditioning is entirely different
than the conditioning made by conditional tests such as Fisher’s [8],
which conditions on the observed supports of the patterns.

Given a fixed threshold α , ut flags S as significant iff pS ≤ α −γ .
The following property holds.

Theorem 4.1. Let S be a fixed pattern. The probability that ut

flags S as significant when it is not is at most α .

Proof. Let F be the event “ut flags S as significant when it is
not”, which corresponds to a false discovery. It holds

Pr(F ) = Pr(F | ES ) Pr(ES )+Pr(F | sES ) Pr(sES ) ≤ Pr(F | ES )+Pr(sES ),

where sES denotes the event complementary to ES . By the definition
of confidence interval, Pr(sES ) ≤ γ , while Pr(F | ES ) ≤ α − γ
since when ES holds we are using the standard hypothesis testing
framework with significance threshold α−γ and thep-valuepS . □

4.1.1 An upper bound to the p-value. The exact computation of
pS when C(S) , ∅ requires an expensive search over the values of
π ∈ C(S). For the purpose of testing the significance of a pattern
and ensuring that Thm. 4.1 still holds, only an efficient-to-compute
upper bound to the p-value is needed. We prove the following.

Theorem 4.2. pS ≤ P (σ (S),σ1(S) | f (S)) (n0 + 1)(n1 + 1).

The upper bound p̂S = P (σ (S),σ1(S) | f (S)) (n0 + 1)(n1 + 1) can
be computed in O(1) time.

4.1.2 A lower bound to the p-value. We now show a lower bound to
pS . More than being just of theoretical interest, this lower bound is
the starting point to derive, in Sect. 4.2.2, an efficiently-computable,
monotonically-non-increasing lower bound to the minimum attain-
able p-value for a pattern S (required to compute the corrected sig-
nificance threshold in a way similar to what is done by lamp [25]).

Computing our lower bound does not require an expensive
search over the values of π , thanks to the following result.

Lemma 4.3. If C(S) , ∅, then pS ≥ ϕ(y,b, π ) for any π ∈ C(S).

Proof. Follows from the definition of pS , that is the maximum
over π ∈ C(S) of the r.h.s. □

Lemma 4.3 states that any π ∈ C(S) allows to obtain a lower
bound to pS , so we choose π = f (S), and define the lower bound
qpS to pS as

qpS = ϕ(σ (S),σ1(S), f (S)) . (3)
Our choice for π is driven by the objective of maximizing the
number of contingency tables in T (σ (S),σ1(S), π ), which we try
heuristically to achieve by maximizing P(σ (S),σ1(S) | π ), which is
straightforward as shown in the following result.

Proposition 4.4. It holds argmaxπ {P(x,a | π )} = x/n.

We show in Sect. 5.1 that qpS provides a tight lower bound to pS .

4.2 SPuManTE: mining significant patterns

We now describe SPuManTE, our algorithm for mining significant
patterns with ut while controlling the FWER. First, we need to
discuss some important technical facts.
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4.2.1 Simultaneous confidence intervals. For each tested pattern
S , ut requires confidence intervals for πS ,0 and πS ,1. Rather than
computing these confidence intervals separately for each pattern,
SPuManTE uses recently developed probabilistic bounds to the
maximum deviation of the frequency of a pattern from its expecta-
tion [20] to derive confidence intervals for the quantities πS ,0 and
πS ,1 of every pattern that hold simultaneously with high probability.
Specifically, given D and a confidence parameter γ ∈ (0, 1), we
use a modified version of the work by Riondato and Upfal [20],
called amira, to obtain a value ε ∈ (0, 1) with the following prop-
erty. Given this ε , define, for each pattern S , the intervalsC0(S) and
C1(S) as

C0(S) :=
[
f0(S) − ε

n

n0
, f0(S) + ε

n

n0

]
,

C1(S) :=
[
f1(S) − ε

n

n1
, f1(S) + ε

n

n1

]
,

and define the event ES ,ε = “πS ,0 ∈ C0(S) and πS ,1 ∈ C1(S)”.
Consider the event Eε =

⋂
S ⊆I ES ,ε . The ε returned by amira

when run on D with confidence parameter γ is such that Eε holds
with probability at least 1 − γ (w.r.t. the randomness in the data
generative process).

4.2.2 Lower bound to the min. att. p-value. In order to use ut in our
algorithm SPuManTE to efficiently mine significant patterns while
rigorously controlling the FWER, we need to define a monotone

lower bound
qψ (x) to the minimum attainable p-value of any S for

which σ (S) ≤ x , x ∈ [0,n]. Having this lower bound is crucial to
prune the search space of testable patterns.

Our bounds crucially hinges on the following results, under the
ongoing assumption n1 ≤ n0.

Theorem 4.5. Let C0(S) ∩C1(S) = C(S) , ∅. Then f (S) ∈ C(S).

Theorem 4.6. argmina {ϕ(x,a, π )} = min{x,n1}.

For x ∈ [0,n] let

Q(x) =

{
(r ,w), r ∈ [qσ0,y , σ̂0,y ],w ∈ [qσ1,y , σ̂1,y ] s.t. y = r +w ≤ x

∧

( r
n0
+ ε

n

n0
<

w

n1
− ε

n

n1
∨

w

n1
+ ε

n

n1
<

r

n0
− ε

n

n0

)}
.

Intuitively, Q(x) contains all the pairs (r ,w) such that the confi-
dence intervals around r/n0 andw/n1 do not intersect. Checking
whether Q(x) is non-empty (i.e., there exists at least one contin-
gency table with marginal ≤ x where the confidence intervals
do not intersect) can be done by checking if Q(x) contains either
(qσ0,x , σ̂1,x ) or (σ̂0,x , qσ1,x ): if Q(x) does not contain either, then it
must be empty because the frequencies in each class of less biased
contingency tables have smaller absolute difference w.r.t. those
two cases, therefore it is not possible that the intersection of their
confidence intervals is empty. Thus, we can define

ψ (x) =

{
0 if Q(x) , ∅
ϕ(x, x, x/n) otherwise

as a lower bound to the minimum attainable pS for all patterns
S with σ (S) = x . For our purposes, we need a monotonically non-

increasing lower bound to the min. att. p-value, so we define

qψ (x) =

{
ψ (x) if x = 0
min{ψ (x), qψ (x − 1)} if x ∈ [1,n]

.

SPuManTE uses qψ to check whether to mark a pattern S with
σ (S) = x as untestable when looking for the corrected signifi-
cance threshold δ (see Sect. 4.2.4). We observe in practice that
min{ψ (x), qψ (x − 1)} = ψ (x) for all x ≤ n1, i.e., ψ (x) appears to be
monotone w.r.t. x . The computation of qψ (x) can be done efficiently
starting from x = 0 and increasing x , keeping the values of qψ (x) in
memory. We describe an even simpler approach later in Sect. 4.2.4.

4.2.3 Efficient computation of ϕ. After having defined qpS and qψ (x),
we still have to address how to compute them efficiently in the
case C(S) , ∅, i.e., how to compute the value ϕ(y,b, π ) efficiently.
A naïve approach is to enumerate all (x,a1) ∈ T (y,b, π ); since
this set is not known a priori (i.e., there is no simple algorithm
to generate only pairs (x,a1) that are in T (y,b, π )), this approach
requires computing P(a0+a1,a1 | π ) for all possible pairs (a0,a1) ∈
[0,n0]×[0,n1], leading to the computation ofΘ (n0n1) probabilities.
As we show in Sect. 5.1, even for samples of moderate size this
approach is not feasible in reasonable time.

Enumerating only pairs (x,a1) ∈ T (y,b, π ) or only pairs (x,a1) <
T (y,b, π ) would still require to evaluate P(x,a1 | π ) a correspond-
ing number of times, i.e., in the order of Θ(min{|T (y,b, π )|,n0n1 −
|T (y,b, π )|}), which is impractical for most cases. We address this
issue with an efficient algorithm to compute ϕ(y,b, π ) while avoid-
ing the enumeration of many contingency tables, thanks to the
novel formulation of ϕ(y,b, π ) provided by the following result.

Proposition 4.7. Let y ∈ [0,n], b ∈ [qσ1,y , σ̂1,y ], and π ∈ (0, 1).
Let A1 = {a1 : P (a1 + ⌊(n0 + 1)π ⌉ ,a1 | π ) > P(y,b | π )}, and de-

fine the set A0,a1 = {a0 : P (a1 + a0,a1 | π ) ≤ P(y,b | π )}. Then∑
(x ,a)∈T (y,b ,π )

P(x,a | π )

=
∑
a1<A1

B(a1,n1, π ) +
∑

a1∈A1

©­«B(a1,n1, π )
∑

a0∈A0,a1

B(a0,n0, π )
ª®¬ ,
(4)

where B(z,h, π ) =
(h
z
)
πz (1 − π )h−z is the probability of obtaining z

successes on h independent trials with success probability π .

This formulation leads to the efficient algorithm to compute
ϕ(y,b, π ) shown in Alg. 1, where we use the incomplete beta function

to compute the cumulative distribution function (CDF) for Binomial
distributions.

In fact, if we let F (a,n, π ) =
∑a
a′=0 B(a

′,n, π ) be the CDF for
value a of the Binomial distribution of parameters n, π , we can com-
pute the terms of (4) with O (1) computations of the incomplete
beta function β1−π (n + 1 − a,a + 1) = F (a,n, π ), that is efficiently
computable using Lentz’s algorithm [14], a fast and precise method
to evaluate continued fractions. The algorithm makes two such
calls in total: the first is performed at the first iteration of the forall
loop on line 9, while the second on line 12. The computation of
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Algorithm 1: Efficient computation of ϕ(y,b, π )
Input: y ∈ [0,n], b ∈ [qσ1,y , σ̂1,y ], π ∈ [0, 1].
Output: ϕ(y,b, π ).

1 v ← 0
2 z ← P(y,b | π )

3 a′0 ← ⌊(n0 + 1)π ⌉

4 A1 ←
{
a1 : P

(
a1 + a′0,a1 | π

)
> z

}
5 forall a1 ∈ A1 do
6 a′ ← mina0

{
a0 ≤ a′0 | P (a0 + a1,a1 | π ) > z

}
7 a′′ ← mina0

{
a0 > a′0 | P (a0 + a1,a1 | π ) ≤ z

}
8 p′ ←

(n1
a1

)
(π )a1 (1 − π )(n1+a1)

9 v ← v + βπ (a
′,n0 − a′)p′ + β1−π (n0 + 1 − a′′,a′′)p′

10 a′ ← mina1 {a1 > max{A1}}

11 a′′ ← maxa1 {a1 < min{A1}}

12 v ← v + βπ (a
′ + 1,n0 + 1 − a′) + β1−π (n0 + 1 − a′′,a′′)

13 return v

values a′ and a′′ (lines 6–7) across all iterations of the forall loop
requires two binary searches for the first iteration, while their val-
ues and the updates of v in subsequent iterations can be computed
with O(1) operations by updating their previously computed val-
ues. Therefore, lines 6–7 require O (log(n0)) operations across all
iterations of the forall loop. As we prove in the Appendix, the time
complexity of Alg. 1 is thus O

(
log(n0) + |A1 | + n0 − |A0,a1 | + La

)
,

where O (La) is the time complexity of Lentz’s algorithm.

4.2.4 SPuManTE. Our algorithm SPuManTE outputs a set of sig-
nificant patterns inD with FWER ≤ α . Its pseudocode is presented
in Alg. 2. SPuManTE first obtains (line 1) the maximum deviation
ε from amira with parameter γ , so that the event Eε holds with
probability ≥ 1−γ . Then (line 2), SPuManTE uses the lower bound
qψ (x) derived in Sect. 4.1.2 (and computed using Alg. 1) together
with a strategy similar to the one in lamp [25] to efficiently derive a
corrected significance threshold δ to use in each test while ensuring
that the FWER is at most α − γ . In particular, such strategy [17]
initializes the support threshold of testable patterns σT to 1, and
increases it while exploring the closed patterns, reducing the set
of testable patterns until the final value of δ is found. Hence, we
can incrementally compute the values of qψ (x) after increasing σT
by simply comparing qψ (σT − 1) toψ (σT ), therefore only keeping
in memory qψ (σT − 1) and not the entire function qψ (x). SPuManTE
then loops over the testable patterns to test them, to decide whether
to flag them as significant or not. It does so by first generating the
set of closed patterns children(∅) that are extensions of the empty
pattern ∅. For every pattern S of those, it only processes S if it
is testable (therefore if the support σ (S) of S is σ (S) ≥ σT ) using
the processPattern(S) procedure. This procedure first computes the
interval C(S) (lines 7–9), and then computes the upper bound p̂S
to the p-value (lines 10–12). If C(S) = ∅, p̂S is set to 0 (line 10);
otherwise SPuManTE computes p̂S using the bound from Thm. 4.2.
SPuManTE uses the upper bound p̂S to decide whether S is signifi-
cant, returning S in output if p̂S < δ (line 13). Then (lines 14–15),

the current pattern S is “grown” generating the set of closed pat-
terns that are extension of S using children(S), enumerating the
space of the testable patterns exhaustively in a depth-first order.

We can show the following property of SPuManTE.

Theorem 4.8. The output of SPuManTE has FWER at most α .

Proof (Sketch). Consider the event F=“the number of false
discoveries reported by SPuManTE is > 0”. The FWER of the output
of SPuManTE is Pr(F ). Recalling the event Eε defined in Sect. 4.2.1,
let sEε be the complementary event. It holds:

Pr(F ) = Pr(F | Eε ) Pr(Eε )+Pr(F | sEε ) Pr(sEε ) ≤ Pr(F | Eε )+Pr(sEε ) .

Using amira with parameter γ guarantees that Pr(sEε ) ≤ γ . By
employing the lamp strategy with parameter α − γ and using the
upper bound p̂S to decide if S is significant, it holds that Pr(F |
Eε ) ≤ α − γ . Therefore Pr(F ) ≤ α − γ + γ = α . □

4.2.5 Increasing the power of ut. SPuManTE provides an efficient
method to identify all significant patterns with bounded FWER.
However, while extremely fast to compute, the upper bound of
Thm. 4.2 does not always provide a tight approximation to the p-
value pS of a pattern S , resulting in a potential reduction in power,
even if as we show in Sect. 5.1 the most significant patterns are still
reported. In the scenarios where one is interested in reporting a
larger number of patterns, at the expense of weakening the guaran-
tees of the FWER, one can use the lower bound qpS of Sect. 4.1.2 in
place of the upper bound of Thm. 4.2 in lines 11–12. While in this
case there is no guarantee on the FWER of the reported patterns,
we show in Sect. 5.1 that qpS is very close to the actual p-value pS ,
leading to a relatively low risk of reporting false discoveries.

Algorithm 2: SPuManTE
Input: Dataset D, acceptable FWER α ∈ (0, 1), confidence

parameter γ ∈ (0,α).
Output: Set of significant patterns with FWER ≤ α .

1 ε ← amira (D,γ )
2 δ ← correctedSignificanceThreshold(α − γ )

3 σT ← min{σ : qψ (σ ) ≤ δ , 1 ≤ σ ≤ n}

4 forall S ∈ children(∅) do
5 if σ (S) ≥ σT then processPattern(S)

6 Function processPattern(S)
7 C0(S) ← [f0(S) − ε

n
n0
, f0(S) + ε

n
n0
]

8 C1(S) ← [f1(S) − ε
n
n1
, f1(S) + ε

n
n1
]

9 CS ← C0(S) ∩C1(S)

10 if CS = ∅ then p̂S ← 0
11 else

12 p̂S ← P (σ (S),σ1(S) | f (S)) (n0 + 1)(n1 + 1)
13 if p̂S ≤ δ then output S

14 forall S ′ ∈ children(S) do
15 if σ (S ′) ≥ σT then processPattern(S ′)

5 EXPERIMENTAL EVALUATION

We implemented SPuManTE and tested it on several datasets. Our
experimental evaluation has the following goals:
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• assess the tightness of the lower bound qpS from (3) w.r.t. the
exact p-value pS .
• evaluate the computational performance of ut: since no
othermethod for performing efficiently an unconditional test
for significant patterns exists, we compare ut with Fisher’s
exact test, the de-facto standard conditional test employed
for significant pattern mining algorithms.
• assess the effectiveness and the impact of the upper bound
p̂S and of the AMIRA confidence intervals on reporting sig-
nificant patterns.

Implementation and environment. We implemented SPuManTE2
and ut by modifying a C implementation of lamp3. For computing
the incomplete beta function in lines 9 and 12 of Alg. 1, we use a
publicly available implementation4 based on Lentz’s algorithm [14].
All the code was compiled with GCC 8 and run on a machine with
a 2.30 GHz Intel Xeon CPU, 512 GB of RAM, on Ubuntu 14.04.

Datasets. We tested SPuManTE on eight datasets commonly
used for the benchmark of significant pattern mining algorithms,
gathered from FIMI’045 and libSVM6. Due to space constraints we
only report results for three datasets (the results for other datasets
are analogous and will be shown in the full version). Descriptive
statistics and preprocessing for these datasets are in the Appendix.

Parameters and experiments. In all our experiments, we set α =
0.05 and γ = 0.01. In order to study the impact of the dataset size on
SPuManTE’s performance, for all datasets we generate a random
sample of size s by taking s transactions uniformly at random with
replacement, varying s in the interval [103, 106].

We compare SPuManTE to three different variants: the first,
that we denote SPuManTE*, is the one described in Sect. 4.2.5,
that provides increased power at the expense of relaxed guarantees
on FWER; the third version, SPuManTEC, flags an itemset S as
significant only if its confidence interval C(S) is C(S) = ∅; the
last one, SPuManTEn, uses a naïve implementation of Alg. 1, that
enumerates all the contingency tables for every pattern S , fixing π
to f (S). However, we do not include the results for SPuManTEn,
since its naïve enumeration strategy results in impractical running
times: for s = 103, the running time of SPuManTEn is always at
least one order of magnitude higher than all other approaches, and
could not complete in one day for s ≥ 104. SPuManTEn would
require even more time if an expensive search over the values of π
is performed to compute pS exactly.

5.1 Results

Quality of the lower bound. Our first experiment aims at evalu-
ating the quality of the lower bound qpS . For fixed n, n1 and S (de-
scribed in Fig. 2), we compute ϕ(σ (S),σ1(S), π ) varying π over 103
equally spaced values in a fixed interval. The valueϕ(σ (S),σ1(S), f (S))
coincides with our lower bound qpS . Fig. 2 shows the resulting
curve: even if qpS , pS (therefore π = f (S) does not maximize
ϕ(σ (S),σ1(S), π )), using qpS provides a principled choice to obtain a
2The code of SPuManTE and the scripts to replicate all experiments are available at
https://github.com/VandinLab/SPuManTE. See also the Appendix.
3https://github.com/fllinares/wylight
4https://github.com/codeplea/incbeta
5http://fimi.ua.ac.be
6https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Figure 2: Values of ϕ(σ (S),σ1(S), π ) for 103 equally spaced val-

ues of π ∈ If (S ) = [0.9 · f (S), 1.1 · f (S)] with n = 103, n1 = 500,
σ (S) = 100, σ1(S) = 40. The red vertical line corresponds to

π∗ = argmaxπ ∈If (S ) {ϕ(σ (S),σ1(S), π )}, the black vertical line

to f (S), the red horizontal line to ϕ(σ (S),σ1(S), π∗), the black

horizontal line to ϕ(σ (S),σ1(S), f (S)).

very tight lower bound to pS . Similar results, not shown for space
constraints, hold for different choices of n, n1, and S .

Running time of SPuManTE. In Fig. 3.(a), we compare the run-
ning times of SPuManTE and SPuManTE* w.r.t. the state-of-the-art
by lamp with Fisher’s exact test, denoted with lampf. Contrary
to the common belief that unconditional tests are computationally
expensive, SPuManTE is, in almost all cases, faster than lampf.
These results stress the efficiency of the upper bound from Thm. 4.2.
The only cases where SPuManTE is slower is for small sample sizes
(s ≤ 104), for running times ≤ 10 seconds, and for retail dataset.
When s is small, the time to compute ε in SPuManTE dominates on
the total execution time. For larger sample sizes, SPuManTE is faster
than lampf by up to almost one order of magnitude. SPuManTE*,
despite computing qpS for every S , generally requires comparable
running time w.r.t. lampf, thanks to our efficient strategy for com-
puting qpS (Sect. 4.1.2). These results show that SPuManTE provides
an efficient strategy for significant pattern mining, even more ef-
ficient than the state-of-the-art even if it (correctly) employs an
unconditional test.

Statistical power of SPuManTE. We evaluate the effectiveness
of the upper bound from Thm. 4.2 in reporting significant pat-
terns. Fig. 3.(b) displays the number of patterns in the output of
SPuManTE, SPuManTE*, and lampf. The set of results reported
by SPuManTE* is always a super-set of the set of results with guar-
antees on the FWER, since SPuManTE* uses a lower bound to the
exact p-value. In all cases SPuManTE reports a large set of results,
comparable in size with the output of SPuManTE*, therefore ut
retains most of the statistical power that would be achieved with
the expensive computing of the exact value of pS . We can observe
that, in almost all cases, lampf reports more (in some cases, twice
as many) patterns than SPuManTE*. Since the p-value computed by
Fisher’s exact test can provide an underestimate of the true p-value
of a pattern (due to the conditional assumptions not being met, see
Fig. 1), the additional patterns reported by lampf may represent
spurious associations.

Lastly, we investigate the impact of using the confidence intervals
in SPuManTE. Fig. 3.(c) shows the number of output patterns by
SPuManTE and the ones reported by SPuManTEC (the variant of
SPuManTE that only checks whether C(S) = ∅ to flag a pattern S

https://github.com/VandinLab/SPuManTE
https://github.com/fllinares/wylight
https://github.com/codeplea/incbeta
http://fimi.ua.ac.be
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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(a) (b) (c)

Figure 3: Comparison between lampf, SPuManTE and SPuManTE* in terms of: (a) running time; (b) number of patterns in

output. In (c) we compare the number of patterns in output found with SPuManTE and SPuManTE
C
.

as significant): the larger the sample, the higher is the number of
patterns flagged as significant by SPuManTEC, since ε decreases as
the sample size grows, so the confidence intervals are more narrow.
For the majority of the datasets we considered, a large number
of patterns are marked as significant just by checking whether
C(S) = ∅, proving that the use of confidence intervals is a crucial
component of SPuManTE.

6 CONCLUSION

We introduce SPuManTE, an efficient algorithm to mine signifi-
cant patterns using our novel unconditional test ut. ut requires
fewer assumptions on the data generation process than commonly
used conditional tests, such as Fisher’s exact test. We prove that SP-
uManTE controls the FWER (i.e., the probability of reporting one or
more false discoveries) at the desired level α set by the user. Our ex-
tensive experimental evaluation shows that SPuManTE efficiently
identifies significant patterns while properly accounting for the
stochastic variations in patterns frequencies due to the probabilis-
tic nature of the data generation process. There are several future
directions of research, including adapting our results to the mining
of other significant patterns (e.g., subgraphs) and the use of ut
in combination with different procedures for multiple hypothesis
correction (e.g., Westfall-Young permutation testing).
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A APPENDIX

In this appendix we present the proofs that we could not include
in the main text and describe how to reproduce our experimental
results.

Missing proofs

The proofs of our results are provided here.

Theorem A.1 (Thm. 4.2 in the main text). It holds

pS ≤ P (σ (S),σ1(S) | f (S)) (n0 + 1)(n1 + 1) .

Proof. It holds

pS = max
π ∈CS


∑

(x ,a)∈T (σ (S ),σ1(S ),π )

P(x,a | π )


≤ max

π ∈CS
{P (σ (S),σ1(S) | π ) |T (σ (S),σ1(S), π )|}

≤ max
π ∈CS

{P (σ (S),σ1(S) | π )} max
π ∈CS

{|T (σ (S),σ1(S), π )|}

= P (σ (S),σ1(S) | f (S)) (n0 + 1)(n1 + 1).

where in the last step we use Prop. 4.4 and the fact that the total
number of contingency tables is (n0 + 1)(n1 + 1), that is an upper
bound to the size of T (a,b, π ) for any a,b, π . □

Proposition A.2 (Prop. 4.4 in the main text). It holds

argmax
π
{P(x,a | π )} = x/n.

Proof. Define the function д(π ) = a′(π )b (1 − π )(c−b) for some
constants a′ > 0, b = x , c = n. Then

∂д(π )

∂π
=

a′(1 − π )(c−b)π (b−1)(cπ − b)
π − 1

.

The only root of ∂д(π )
∂π for π ∈ (0, 1) is given by π = b

c =
x
n . It

is trivial to check that the sign of the second order derivative is
always < 0, and this fact completes the proof. □

Theorem A.3 (Thm. 4.5 in the main text). LetC0(S) ∩C1(S) =
CS , ∅. Then f (S) ∈ CS .

Proof. We prove the result assuming σ0(S)/n0 > σ1(S)/n1 (the
proof for the other case is analogous) and assuming that the con-
fidence intervals have the form provided by amira. Recall that
f (S) = σ (S)/n. C0(S) ∩C1(S) , ∅ is equivalent to

σ1(S)

n1
+ ε

n

n1
≥
σ0(S)

n0
− ε

n

n0
. (5)

and that proving σ (S)/n ∈ C0(S) ∩C1(S) corresponds to prove that
σ1(S)

n1
+ ε

n

n1
≥
σ (S)

n
(6)

and
σ0(S)

n0
− ε

n

n0
≤
σ (S)

n
(7)

both hold. Equation (5) above is equivalent to
σ0(S)

n0
−
σ1(S)

n1
≤ εn

(
1
n0
+

1
n1

)
. (8)

It holds
σ (S)

n
=
σ1(S)

n1
+
n0
n

(
σ0(S)

n0
−
σ1(S)

n1

)

and from (8) we derive

σ (S)

n
=
σ1(S)

n1
+
n0
n

(
σ0(S)

n0
−
σ1(S)

n1

)
≤
σ1(S)

n1
+
n0
n
εn

(
1
n0
+

1
n1

)
=
σ1(S)

n1
+ n0ε

(
1
n0
+

1
n1

)
=
σ1(S)

n1
+ ε

(
1 +

n0
n1

)
=
σ1(S)

n1
+ ε

n

n1
,

that proves (6).
For (7), it holds

σ (S)

n
=
σ0(S)

n0
−
n1
n

(
σ0(S)

n0
−
σ1(S)

n1

)
and from (8) we derive

σ (S)

n
=
σ0(S)

n0
−
n1
n

(
σ0(S)

n0
−
σ1(S)

n1

)
≥
σ0(S)

n0
−
n1
n
εn

(
1
n0
+

1
n1

)
=
σ0(S)

n0
− n1ε

(
1
n0
+

1
n1

)
=
σ0(S)

n0
− ε

(
1 +

n1
n0

)
=
σ0(S)

n0
− ε

n

n0
,

that proves (7). □

Theorem A.4 (Thm. 4.6 in the main text).

argmin
a
{ϕ(x,a, π )} = min{x,n1}.

Proof. We assume n1 ≤ n0. Let qa = qσ1,x and â = σ̂1,x . We first
prove that

min
a
{P(x,a, π )} = P(x, â, π ) (9)

by observing that, ∀a ∈ [qa, â],

P(x,a, π )

P(x, â, π )
=

B(x − a,n − n1, π )B(a,n1, π )

B(x − â,n − n1, π )B(â,n1, π )
=

(n−n1
x−a

) (n1
a
)(n−n1

x−â
) (n1

â
) ≥ 1.

A direct consequence of (9) and the definition of T (x,a, π ) is

T (x, â, π ) ⊆ T (x,a, π ),∀a ∈ [qa, â]. (10)

Then (10) leads to

ϕ(x,a, π )

ϕ(x, â, π )
=

∑
(y,b)∈T (x ,a,π ) P(y,b | π )∑
(y,b)∈T (x ,â,π ) P(y,b | π )

≥ 1,∀a ∈ [qa, â],

that proves the statement. □

Proposition A.5 (Prop. 4.7 in the main text). Let y ∈ [0,n],
b ∈ [qσ1,y , σ̂1,y ], and π ∈ (0, 1). Let

A1 = {a1 : P (a1 + ⌊(n0 + 1)π ⌉ ,a1 | π ) > P(y,b | π )} ,

and define the set A0,a1 = {a0 : P (a1 + a0,a1 | π ) ≤ P(y,b | π )}.
Then ∑
(x ,a)∈T (y,b ,π )

P(x,a | π )

=
∑
a1<A1

B(a1,n1, π ) +
∑

a1∈A1

©­«B(a1,n1, π )
∑

a0∈A0,a1

B(a0,n0, π )
ª®¬ ,

where B(z,h, π ) =
(h
z
)
πz (1 − π )h−z is the probability of obtaining z

successes on h independent trials with success probability π .
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dataset |D | |I | avg n1/n

breast cancer 12,773 1,129 6.7 0.09
retail(U ) 88,162 16,470 10.3 0.47
covtype 581,012 64 11.9 0.49

Table 2: Datasets statistics. For each dataset we report: name

(see Sect. 5 for the meaning of U ), number |D| of transac-

tions; the number |I | of items; average transaction length

avg; fraction n1/n of transactions inZ1
.

Proof. We formulate
∑
(x ,a)∈T (y,b ,π ) P(x,a | π ) as∑

(x ,a)∈T (y,b ,π )

P(x,a | π )

=
∑

(a0+a1,a1)∈T (y,b ,π )

(
n0
a0

) (
n1
a1

)
πa0+a1 (1 − π )(n0+n1−a0+a1)

=
∑

(a0+a1,a1)∈T (y,b ,π )

B(a0,n0, π )B(a1,n1, π )

Let ⌊a⌉ denote the closest integer to a. It holds

P (a1 + ⌊(n0 + 1)π ⌉ ,a1 | π ) ≥ P (a1 + a0,a1 | π ) ,∀a0 ∈ [0,n0] .

Given the above and the definition of A1 and A0,a1 , we obtain∑
(x ,a)∈T (y,b ,π )

P(x,a | π )

=
∑

(a0+a1,a1)∈T (y,b ,π )

B(a0,n0, π )B(a1,n1, π )

=
∑
a1<A1

B(a1,n1, π ) +
∑

a1∈A1

©­«B(a1,n1, π )
∑

a0∈A0,a1

B(a0,n0, π )
ª®¬
□

Proposition A.6. The time complexity of Alg. 1 is

O
(
log(n0) + |A1 | + n0 − |A0,a1 | + La

)
,

where O (La) is the time complexity of Lentz’s algorithm.

Proof. The log(n0) term follows from a binary search over n0
sorted elements, that is performed on the first iteration of the forall
loop. Every iteration of the forall loop requiresO(1)work, resulting
in the O(|A1 |) term. The sum of all the work done during the forall
loop does not exceed O(n0 − |A0,a1 |), that is the time to increase
a′ and to decrease a′′ in its every iteration and to update p′ and v .
The O (La) term follows since the total number of calls to Lentz’s
algorithm is constant. □

Experimental reproducibility

We now describe how to reproduce our experimental results. Code
and data are available at https://github.com/VandinLab/SPuManTE.

Datasets and preprocessing. The statistics of the datasets we anal-
ysed are described in Table 2. For datasets whose transactions are
not naturally divided in two groups (marked with U ), we selected
the single item whose frequency is closer from below to 0.5, re-
moved the corresponding item from every transaction, and use its
appearance to divide the dataset in two groups. The reported ratio
n1/n refers to the output of this process. For real-valued features
we obtained two bins by thresholding at the mean value and using
one item for each bin.

Reproducing our simulations. The plot of Fig. 1 can be created
with the Python script fisher_simulations.py in the scripts/
folder. The results of Fig. 2 can be obtained using the
find_max_pi.py script. All the parameters of the experiments can
be modified with appropriate input parameters, or by directly mod-
ifying the scripts.

Reproducing our experiments. The code of SPuManTE and all
variants of ut are in the sub-folder unconditional/, while the
code for lampf is in the sub-folder fisher/. Inside each folder, the
correct/ directory contains the code for computing the corrected
significance threshold δ , while the enumerate/ directory contains
the code to actually compute the significant patterns.

To compile all the software, use the make command inside all
correct/ and enumerate/ sub-folders. Then, also compile amira
by running make inside the amira/ folder. A recent version of GCC
(e.g., GCC 8.0) is needed to compile amira.

Once everything has been compiled, convenient scripts can be
used to run the experiments. In particular, run_amira.py,
run_unconditional.py and run_fisher.py automatically exe-
cute amira, SPuManTE, and lampf, respectively. These scripts
accept a variety of input parameters. In particular, you need to spec-
ify a particular dataset and the size of a random sample to create
using the flags -db and -sz. As an example, the command line to
process with SPuManTE a random sample of 103 transactions from
the dataset mushroom is

run_unconditional.py -db mushroom -sz 1000

and it automatically executes amira and SPuManTE.
The run_all_datasets.py script runs all the instances of SP-

uManTE ad lampf in parallel, and can be used to reproduce all the
experiments described in Sect. 5.

https://github.com/VandinLab/SPuManTE
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