MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining

LEONARDO PELLEGRINA, Università di Padova, Italy
CYRUS COUSINS, Brown University, USA
FABIO VANDIN, Università di Padova, Italy
MATTEO RIONDATO, Amherst College, USA

“I'm an MC still as honest” — Eminem, Rap God

We present MCRapper, an algorithm for efficient computation of Monte-Carlo Empirical Rademacher Averages (MCERA) for families of functions exhibiting poset (e.g., lattice) structure, such as those that arise in many pattern mining tasks. The MCERA allows us to compute upper bounds to the maximum deviation of sample means from their expectations, thus it can be used to find both 1. statistically-significant functions (i.e., patterns) when the available data is seen as a sample from an unknown distribution, and 2. approximations of collections of high-expectation functions (e.g., frequent patterns) when the available data is a small sample from a large dataset. This flexibility offered by MCRapper is a big advantage over previously proposed solutions, which could only achieve one of the two. MCRapper uses upper bounds to the discrepancy of the functions to efficiently explore and prune the search space, a technique borrowed from pattern mining itself. To show the practical use of MCRapper, we employ it to develop an algorithm TFP-R for the task of True Frequent Pattern (TFP) mining. TFP-R gives guarantees on the probability of including any false positives (precision) and exhibits higher statistical power (recall) than existing methods offering the same guarantees. We evaluate MCRapper and TFP-R and show that they outperform the state-of-the-art for their respective tasks.

CCS Concepts: • Information systems → Data mining; • Mathematics of computing → Probabilistic algorithms; • Theory of computation → Sketching and sampling.

Additional Key Words and Phrases: Approximation Algorithms, Frequent Patterns, Itemsets, Sampling, Significant Patterns, Statistical Testing, Statistical Learning Theory, Subgroup Discovery

ACM Reference Format:

1 INTRODUCTION

Pattern mining is a key sub-area of knowledge discovery from data, with a large number of variants (from itemsets mining [1] to subgroup discovery [16], to sequential patterns [2], to graphlets [3]) tailored to applications ranging from market basket analysis to spam detection to recommendation systems. Ingenious algorithms for all variants have been proposed over the years, and pattern mining is both widely used in practice and an extremely vibrant area of research.

*A preliminary version of this work [22] appeared in the proceedings of ACM KDD’20.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Knowledge Discovery from Data, https://doi.org/10.1145/nnnnnnn.nnnnnnn.
In this work, we are interested in the analysis of samples for pattern mining. There are two meanings of “sample” in this context, but, as we now argue, they are really two sides of the same coin, and our methods work for both sides.

The first meaning is sample as a small random sample of a large dataset: since mining patterns becomes more expensive as the dataset grows, it is reasonable to mine only a small random sample that fits into the main memory of the machine. Recently, this meaning of sample as “sample-of-the-dataset” has been used also to enable interactive data exploration using progressive algorithms for pattern mining [31]. The patterns obtained from the sample are an approximation of the exact collection, due to the noise introduced by the sampling process. To obtain desirable probabilistic guarantees, one must study the trade-off between the size of the sample and the quality of the approximation. Many works have obtained progressively better characterizations of the trade-off using advanced probabilistic concepts [8, 25, 26, 28, 31, 36]. Recent methods [25, 26, 28, 31] use VC-dimension, pseudodimension, and Rademacher averages [4, 17], key concepts from statistical learning theory [38] (see also Sect. 2 and Sect. 3.2), because they allow to obtain uniform (i.e., simultaneous) probabilistic guarantees on the deviations of all sample means (e.g., sample frequencies, or other measure of interestingness) of all patterns from their expectations (the exact interestingness of the patterns in the dataset).

The second meaning is sample as a sample from an unknown data generating process: the whole dataset is seen as a collection of samples from an unknown distribution, and the goal of mining patterns from the available dataset is to gain approximate information (or better, discover knowledge) about the distribution. This area is known as statistically-sound pattern discovery [14], and there are many different flavors of it, from significant pattern mining [35] on transactional datasets [15, 23], sequences [37], or graphs [34], to true frequent itemset mining [27], to, at least in part, contrast pattern mining [5]. Many works in this area also use concepts from statistical learning theory, such as empirical VC-dimension [27] or Rademacher averages [23], because, once again, these concepts allow to get very sharp bounds on the maximum difference between the observed interestingness on the sample and the unknown interestingness according to the distribution.

The two meanings of “sample” are really two sides of the same coin, because also in the first case the goal is to approximate an unknown distribution from a sample, thus falling back into the second case. Despite this similarity, previous contributions have been extremely point-of-view-specific and pattern-type-specific (e.g., only either for approximating frequent itemsets [25, 26] or subgroups [29], or sequences [30, 32] from a sample, or for discovering significant patterns [23, 27]). In part, these limitations are due to the techniques used to study the trade-off between sample size and quality of the approximation obtained from the sample. Our work instead proposes a unifying solution for mining approximate collections of patterns from samples, while giving guarantees on the quality of the approximation: our proposed method can easily be adapted to approximate collections of frequent itemsets, frequent sequences, true frequent patterns, significant patterns, and many other tasks, even outside of pattern mining.

At the core of our approach is the n-Trials Monte-Carlo (Empirical) Rademacher Average (n-MCERA) [4] (see (4)), which has the flexibility and the power needed to achieve our goals, as it gives much sharper bounds to the deviation of sample means from their expectations than other approaches. The challenge in using the n-MCERA, like many other quantities from statistical learning theory, is how to compute it efficiently.

Contributions. We present MCRapper, an algorithm for the fast computation of the n-MCERA of families of functions with a poset structure, which often arise in pattern mining tasks (Sect. 3.1).

- MCRapper is the first algorithm to compute the n-MCERA efficiently. It achieves this goal by using sharp upper bounds to the discrepancy of each function in the family (Sect. 4.1) to
quickly prune large parts of the function search space during the exploration necessary to compute the n-MCERA, in a branch-and-bound fashion. We also develop a novel sharper upper bound to the supremum deviation of sample means from their expectations using the 1-MCERA (Thm. 4.7). It holds for any family of functions, and is of independent interest.

- To showcase the practical strength of MCRapper, we develop TFP-R (Sect. 5), a novel algorithm for the extraction of the True Frequent Patterns (TFP) [27]. TFP-R gives probabilistic guarantees on the quality of its output: with probability at least $1 - \delta$ (over the choice of the sample and the randomness used in the algorithm), for user-supplied $\delta \in (0, 1)$, the output is guaranteed to not contain any false positives. That is, TFP-R controls the Family-Wise Error Rate (FWER) at level δ while achieving high statistical power, thanks to the use of the n-MCERA and of novel variance-aware tail bounds (Thm. 3.5). We also discuss other applications of MCRapper, to emphasize its flexibility as a general-purpose algorithm.

- We conduct an extensive experimental evaluation of MCRapper and TFP-R on real datasets (Sect. 6), and compare their performance with that of state-of-the-art algorithms for their respective tasks. MCRapper, thanks to the n-MCERA, computes much sharper (i.e., lower) upper bounds to the supremum deviation than algorithms using the looser Massart’s lemma [33, Lemma 26.8]. TFP-R extracts many more TFPs (i.e., has higher statistical power) than existing algorithms with the same guarantees.

The present article extends the conference version [22] in multiple ways, including:

- We give a new algorithm for mining the True Frequent Patterns presented in Sect. 5, so it computes an even better approximation of this collection of patterns. This new approach decomposes the problem into obtaining independent approximations of the negative and positive borders of the collection of patterns of interest. This decomposition enables the algorithm to achieve higher power (i.e., return more TFPs) while maintaining the same probabilistic guarantees on the presence of any false positive in the output.

- We also show a variant of the TFP-mining algorithm that (probabilistically) returns two collections of patterns, one with perfect precision and one with perfect recall, thus achieving the best of both worlds.

- We include all the proofs of our theoretical results, after fine tuning their hypotheses and assumptions, to make our work as general as possible. We add examples and figures to help the understanding of important concepts.

- We include additional experimental results to study the composition of the error bound as the number n of Monte-Carlo trials, and to show the behavior of the algorithm for different values of the minimum frequency threshold θ.

\section{RELATED WORK}

Our work applies to both the “small-random-sample-from-large-dataset” and the “dataset-as-a-sample” settings, so we now discuss the relationship of our work to prior art in both settings. We do not study the important but different task of output sampling in pattern mining [6, 12]. We focus on works that use concepts from statistical learning theory: these are the most related to our work, and most often the state of the art in their areas. More details are available in surveys [14, 25].

The idea of mining a small random sample of a large dataset to speed up the pattern extraction step was proposed for the case of itemsets by Toivonen [36] shortly after the first algorithm for the task had been introduced. The trade-off between the sample size and the quality of the approximation obtained from the sample has been progressively better characterized [8, 25, 26], with large improvements due to the use of concepts from statistical learning theory. Riondato and Upfal [25] study the VC-dimension of the itemsets mining task, which results in a worst-case
dataset-dependent but sample- and distribution-agnostic characterization of the trade-off. The major advantage of using Rademacher averages [17], as we do in MCRapper is that the characterization is now sample-and-distribution-dependent, which gives much better upper bounds to the maximum deviation of sample means from their expectations. Rademacher averages were also used by Riondato and Upfal [26], but they used worst-case upper bounds (based on Massart’s lemma [33, Lemma 26.2]) to the empirical Rademacher average of the task, resulting in excessively large bounds. MCRapper instead computes the exact n-MCERA of the family of interest on the observed sample, without having to consider the worst case. For other kinds of patterns, Riondato and Vandin [29] studied the pseudodimension of subgroups, while Santoro et al. [30] and Servan-Schreiber et al. [32] considered the (empirical) VC-dimension and Rademacher averages for sequential patterns. MCRapper can be applied in all these cases, and obtains better bounds because it uses the sample-and-distribution-dependent n-MCERA, rather than a worst case dataset-dependent bound.

Significant pattern mining considers the dataset as a sample from an unknown distribution. Many variants and algorithms are described in the survey by Hämäläinen and Webb [14]. We discuss only the two most related to our work. Riondato and Vandin [27] introduce the problem of finding the true frequent itemsets, i.e., the itemsets that are frequent w.r.t. the unknown distribution. They propose a method based on empirical VC-dimension to compute the frequency threshold to use to obtain a collection of true frequent patterns with no false positives (see also Sect. 5). Our algorithm TFP-R uses the n-MCERA, and as we show in Sect. 6, it greatly outperforms the state-of-the-art (a modified version of the algorithm by Riondato and Upfal [26] for approximate frequent itemsets mining). Pellegrina et al. [23] use empirical Rademacher averages in their work for significant pattern mining. As their work uses the bound by Riondato and Upfal [26], the same comments about the n-MCERA being a superior approach hold.

Our approach to bounding the supremum deviation by computing the n-MCERA with efficient search space exploration techniques is novel, not just in knowledge discovery, as the n-MCERA has received scant attention. In fact, the only use of the n-MCERA predating the conference version of our paper is the work of De Stefani and Upfal [11], which uses it to control the generalization error in a sequential and adaptive setting, but do not discuss efficient computation. Subsequently, Cousins and Riondato [9] presented refined sharp bounds to the supremum deviation that can use the n-MCERA, but do not focus on how to compute them efficiently. Pellegrina (Chap. 7 of [21]) proved self-bounding properties of the n-MCERA, and used them to obtain sharp variance-dependent bounds relating the n-MCERA to the empirical Rademacher average. More recently Cousins et al. [10] used the n-MCERA for computing approximations of betweenness centrality in large graphs, a very different task that has no connection with pattern mining, and for which the computation of the n-MCERA is straightforward. We believe that the lack of attention to the n-MCERA can be explained by the fact that there were no efficient algorithms for it, a gap now filled by MCRapper.

3 PRELIMINARIES

We now define the most important concepts and results that we use throughout this work. Let \(F \) be a class of real valued functions from a domain \(X \) to the interval \([a, b] \subset \mathbb{R}\). We use \(c \) to denote \(|b - a| \) and \(z \) to denote \(\max\{|a|, |b|\} \). In this work, we focus on a specific class of families (see Sect. 3.1). In pattern mining from transactional datasets, \(X \) is the set of all possible transactions (or, e.g., sequences). Let \(\mu \) be an unknown probability distribution over \(X \) and the sample \(S = \{s_1, \ldots, s_m\} \) be a bag of \(m \) i.i.d. random samples from \(X \) drawn according to \(\mu \). We discussed in Sect. 1 how in the pattern mining case, the sample may either be the whole dataset (sampled according to an unknown distribution) or a random sample of a large dataset (more details in Sect. 3.1). For each \(f \in F \), we define its empirical sample average (or sample mean) \(\hat{E}_S[f] \) on \(S \) and its expectation
\(E[f] \) respectively as
\[
\frac{1}{m} \sum_{s_i \in S} f(s_i) \quad \text{and} \quad \frac{1}{m} \sum_{s_i \in S} f(s_i).
\]
In the pattern mining case, the sample mean is the observed interestingness of a pattern, e.g., its frequency (but other measures of interestingness can be modeled as above, as discussed for subgroups by Riondato and Vandin [29]), while the expectation is the unknown exact interestingness that we are interested in approximating, that is, either in the large datasets or w.r.t. the unknown data generating distribution. We are interested in developing tight and fast-to-compute upper bounds to the supremum deviation (SD) \(D(\mathcal{F}, S, \mu) \) of \(\mathcal{F} \) on \(S \) between the empirical sample average and the expectation simultaneously for all \(f \in \mathcal{F} \), defined as
\[
D(\mathcal{F}, S, \mu) = \max_{f \in \mathcal{F}} \left| \frac{1}{m} \sum_{s_i \in S} f(s_i) - \frac{1}{m} \sum_{s_i \in S} f(s_i) \right|.
\]
The supremum deviation allows to quantify how good the estimates obtained from the samples are. Because \(\mu \) is unknown, it is not possible to compute \(D(\mathcal{F}, S, \mu) \) exactly. We introduce concepts such as Monte-Carlo Rademacher Average and results to compute such bounds in Sect. 3.2, but first we elaborate on the specific class of families that we are interested in.

3.1 Poset families and patterns

A partially-ordered set, or *poset* is a pair \((A, \preceq)\) where \(A\) is a set and \(\preceq\) ("precedes") is a binary relation between elements of \(A\) that is reflexive, anti-symmetric, and transitive. Examples of posets include the case \(A = \mathbb{N}\) with the obvious "less-than-or-equal-to" \((\leq)\) relation, and the powerset of a set of elements with the "subset-or-equal" \((\subseteq)\) relation. For any element \(y \in A\), we call an element \(w \in A, w \neq y\) a descendant of \(y\) (and call \(y\) an ancestor of \(w\)) if \(y \preceq w\). Additionally, if \(y \preceq w\) and there is no \(q \in A, q \neq y, q \neq w\) such that \(y \preceq q \preceq w\), then we say that \(w\) is a child of \(y\) and that \(y\) is a parent of \(w\). For example, the set \(\{0, 2\}\) is a parent of the set \(\{0, 2, 5\}\) and an ancestor of the set \(\{0, 1, 2, 7\}\), when considering \(A\) to be all possible subsets of integers and the \(\subseteq\) relation.

In this work we are interested in posets where \(A\) is a family \(\mathcal{F}\) of functions as in Sect. 3.2, and the relation \(\leq\) is the following: for any \(f, g \in \mathcal{F}\)
\[
f \leq g \text{ iff } \begin{cases} f(x) \geq g(x) & \text{for every } x \in X \text{ s.t. } f(x) \geq 0 \\ f(x) \leq g(x) & \text{for every } x \in X \text{ s.t. } f(x) < 0 \end{cases}.
\]

This very general but slightly complicated requirement often collapses to much simpler ones in practical cases, as we discuss below. We aim for generality, as our goal is to develop a unifying approach for many pattern mining tasks, for both meanings of "sample", as discussed in Sect. 1. For now, consider for example that requiring \(|f(x)| \geq |g(x)|\) for every \(x \in X\) is a specialization of the above more general requirement (see also Fig. 1). The condition in (2) is also different from (but not contrasting) anti-monotonicity, which would require \(f(x) \geq g(x)\) for every \(x \in X\). In particular, for both anti-monotonicity and the condition in (2) to hold, it must be \(g(x) = f(x)\) whenever \(f(x) \leq 0\).

We assume to have access to a blackbox function children that, given any function \(f \in \mathcal{F}\), returns the list of children of \(f\) according to \(\preceq\), and to a blackbox function minimal that, given \(\mathcal{F}\), returns the minimal elements w.r.t. \(\preceq\), i.e., all the functions \(f \in \mathcal{F}\) without any parents. We refer to families that satisfy these conditions as poset families, even if the conditions are more about the relation \(\preceq\) than about the family \(\mathcal{F}\). We now discuss how poset families arise in many pattern mining tasks.

In pattern mining, it is assumed to have a language \(L\) containing the patterns of potential interest. For example, in itemsets mining [1], \(L\) is the set of all possible itemsets, i.e., all non-empty subsets
of an alphabet I of items, while in sequential pattern mining [2], \mathcal{L} is the set of sequences, and in subgroup discovery [16], \mathcal{L} is set by the user as the set of potentially-interesting conditions on the descriptive features. In all these cases, for each pattern $P \in \mathcal{L}$, it is possible to define a function f_P from the domain X, which is the set of all possible transactions, i.e., elementary components of the dataset or of the sample, to an appropriate co-domain $[a, b]$, such that $f_P(x)$ denotes the “value” of the pattern P on the transaction x. For example, for itemsets mining, X is all the subsets of I (i.e., all possible transactions), and f_P maps X to $\{0, 1\}$ so that $f_P(x) = 1$ iff $P \subseteq x$ and 0 otherwise. A consequence of this definition is that $\hat{E}[f_P]$ is the frequency of P in S, i.e., the fraction of transactions of S that contain the pattern P. A more complex (due to the nature of the patterns) but similar definition would hold for sequential patterns. For the case of high-utility itemset mining [13], the value of $f_P(x)$ would be the utility of P in the transaction x. Thus, in pattern mining, the family \mathcal{F} is the set of the functions f_P for every pattern $P \in \mathcal{L}$. Similar reasoning also applies to patterns on graphs, such as graphlets [3].

Now that we have defined the set that we are interested in, let’s comment on the relation \preceq that, together with the set, forms the poset. In the itemsets case, for any two patterns P' and $P'' \in \mathcal{L}$, i.e., for any two functions $f = f_{P'}$ and $g = f_{P''} \in \mathcal{F}$, it holds $f \preceq g$ iff $P' \subseteq P''$. For sequences, the subsequence relation \sqsubseteq defines \preceq instead. In all pattern mining tasks, the only minimal element of \mathcal{F} w.r.t. \preceq is the pattern \emptyset. Our assumption to have access to the blackboxes children andimals is therefore very reasonable, because computing these collections is extremely straightforward in all the pattern mining cases we just mentioned and many others.

3.2 Rademacher Averages

Here we present Rademacher averages [4, 17] and related results at the core of statistical learning theory [38]. Our presentation uses the most recent and sharper bounds, and we also introduce new ones (Thm. 3.5, and later Thm. 4.7) that may be of independent interest. For an introduction to statistical learning theory and more details about Rademacher averages, we refer the interested reader to the textbook by Shalev-Shwartz and Ben-David [33]. In this section we consider a generic family \mathcal{F} from X to $[a, b]$, not necessarily a poset family.

A key quantity to study the supremum deviation (SD) from (1) is the empirical Rademacher average (ERA) $\hat{R}(\mathcal{F}, S)$ of \mathcal{F} on S [4, 17], defined as follows. Let $\sigma = \langle \sigma_1, \ldots, \sigma_m \rangle$ be a collection of m i.i.d. Rademacher random variables, i.e., each taking value in $\{-1, 1\}$ with equal probability.
The ERA of \(F\) on \(S\) is the quantity
\[
\hat{R}(F, S) = \mathbb{E}_\sigma \left[\sup_{f \in F} \frac{1}{m} \sum_{i=1}^m \sigma_i f(s_i) \right].
\]

Computing the ERA \(\hat{R}(F, S)\) exactly is often intractable, due to the expectation over \(2^m\) possible assignments for \(\sigma\), and the need to compute a supremum for each of these assignments, which precludes many standard techniques for computing expectations. Bounds to the SD are then obtained through efficiently-computable upper bounds to the ERA. Massart’s lemma [33, Lemma 26.2] gives a deterministic upper bound to the ERA that is often very loose. Monte-Carlo estimation allows to obtain an often sharper probabilistic upper bound to the ERA. For \(n \geq 1\), let \(\sigma \in \{-1, 1\}^{n \times m}\) be a \(n \times m\) matrix of i.i.d. Rademacher random variables. The \(n\)-Trials Monte-Carlo Empirical Rademacher Average (\(n\)-MCERA) \(\hat{R}_n^m(F, S, \sigma)\) of \(F\) on \(S\) using \(\sigma\) is [4]
\[
\hat{R}_n^m(F, S, \sigma) = \frac{1}{n} \sum_{j=1}^n \sup_{f \in F} \frac{1}{m} \sum_{s_i \in S} \sigma_j f(s_i).
\]

The \(n\)-MCERA allows to obtain probabilistic upper bounds to the SD as follows. In Sect. 4.3 we also show a novel improved bound for the special case \(n = 1\) (Thm. 4.7).

Theorem 3.1. Let \(\eta \in (0, 1)\). For ease of notation let
\[
\hat{R} = \hat{R}_n^m(F, S, \sigma) + 2\sqrt{\frac{\ln \frac{4}{\eta}}{2nm}}.
\]

With probability at least \(1 - \eta\) over the choice of \(S\) and \(\sigma\), it holds
\[
D(F, S, \mu) \leq 2\hat{R} + \sqrt{\frac{c(4m\hat{R} + c \ln \frac{4}{\eta}) \ln \frac{4}{\eta}}{m}} + \frac{c \ln \frac{4}{\eta}}{m} + c \sqrt{\frac{\ln \frac{4}{\eta}}{2nm}}.
\]

Before proving Thm. 3.1 we need to introduce some technical results.

Theorem 3.2 (McDiarmid’s inequality [19]). Let \(Y \subseteq \mathbb{R}^\ell\), and let \(g : Y \to \mathbb{R}\) be a function such that, for each \(i, 1 \leq i \leq \ell\), there is a nonnegative constant \(c_i\) such that:
\[
\sup_{x_1, \ldots, x_{\ell}, x'_i \in \mathbb{X}} |g(x_1, \ldots, x_\ell) - g(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_\ell)| \leq c_i.
\]

Let \(x_1, \ldots, x_\ell\) be \(\ell\) independent random variables taking value in \(\mathbb{R}^\ell\) such that \((x_1, \ldots, x_\ell) \in Y\). Then it holds
\[
\Pr(g(x_1, \ldots, x_\ell) - \mathbb{E}_{\mu}[g] > t) \leq e^{-2t^2/C},
\]
where \(C = \sum_{i=1}^\ell c_i^2\).

The following result is an application of McDiarmid’s inequality to the \(n\)-MCERA, with constants \(c_i = 2\sqrt{\eta/m}\).

Lemma 3.3. Let \(\eta \in (0, 1)\). Then, with probability at least \(1 - \eta\) over the choice of \(\sigma\), it holds
\[
\hat{R}(F, S) = \mathbb{E}_\sigma \left[\hat{R}_n^m(F, S, \sigma) \right] \leq \hat{R}_n^m(F, S, \sigma) + 2\sqrt{\frac{\ln \frac{1}{\eta}}{2nm}}.
\]

The following result gives a probabilistic upper bound to the supremum deviation using the RA and the ERA [20, Thm. 3.11].
Theorem 3.4. Let $\eta \in (0, 1)$. Then, with probability at least $1 - \eta$ over the choice of S, it holds
\[
D(\mathcal{F}, S, \mu) \leq 2\hat{R}(\mathcal{F}, S) + \frac{\sqrt{c \left(4m\hat{R}(\mathcal{F}, S) + c \ln \frac{3}{\eta}\right) \ln \frac{3}{\eta}}}{m} + \frac{c \ln \frac{3}{\eta}}{m} + c\sqrt{\frac{\ln \frac{3}{\eta}}{2m}}. \tag{8}
\]

We can now prove Thm. 3.1.

Proof of Thm. 3.1. Through Lemma 3.3 (using η there equal to $\eta/4$), Thm. 3.4 (using η there equal to $3\eta/4$), and an application of the union bound. \qed

Sharper upper bounds to $D(\mathcal{F}, S, \mu)$ than the ones presented in Thm. 3.1 can be obtained with the n-MCERA when more information about \mathcal{F} is available, as we now show in Thm. 3.5. We use this result for a specific pattern mining task in Sect. 5.

Theorem 3.5. Let ν be an upper bound to the variance of every function in \mathcal{F}, and let $\eta \in (0, 1)$. Define the following quantities
\[
\rho \doteq R^\eta_n(\mathcal{F}, S, \sigma) + 2z\sqrt{\frac{\ln \frac{4}{\eta}}{2nm}}, \tag{9}
\]
\[
r \doteq \rho + \frac{1}{2m} \left(\sqrt{c \left(4m\rho + c \ln \frac{4}{\eta}\right) \ln \frac{4}{\eta}} + c \ln \frac{4}{\eta}\right),
\]
\[
\epsilon \doteq 2r + \sqrt{\frac{2 \ln \frac{4}{\eta} (\nu + 4c\epsilon \rho)}{m}} + \frac{c \ln \frac{4}{\eta}}{3m}. \tag{10}
\]
Then, with probability at least $1 - \eta$ over the choice of S and σ, it holds
\[
D(\mathcal{F}, S, \mu) \leq \epsilon.
\]

We need the following technical results to show Thm. 3.5.

Theorem 3.6 (Symmetrization inequality [17]). For any family \mathcal{F} it holds
\[
\mathbb{E}_S \left[\sup_{f \in \mathcal{F}} \left(\frac{\mathbb{E}_S[f] - \mathbb{E}[f]}{\mu} - 2\hat{R}(\mathcal{F}, S)\right)\right] \leq 0.
\]

Theorem 3.7 ([7, Thm. 2.3]). Let $Z = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_S[f] - \mathbb{E}_\mu[f]\right)$. Let $\gamma \in (0, 1)$. Then, with probability at least $1 - \gamma$ over the choice of S, it holds
\[
Z \leq \mathbb{E}_\mu[Z] + \sqrt{\frac{2 \ln \frac{1}{\gamma} (\nu + 2c\mathbb{E}_\mu[Z])}{m}} + \frac{c \ln \frac{1}{\gamma}}{3m}. \tag{11}
\]

Proof of Thm. 3.5. Consider the events $E_1 \doteq \rho \geq \hat{R}(\mathcal{F}, S)$, and
\[
E_2 \doteq E_\mu[\hat{R}(\mathcal{F}, S)] \leq \hat{R}(\mathcal{F}, S) + \frac{1}{2m} \left(\sqrt{c \left(4m\rho + c \ln \frac{4}{\eta}\right) \ln \frac{4}{\eta}} + c \ln \frac{4}{\eta}\right).
\]
From Lemma 3.3, we know that E_1 holds with probability at least $1 - \eta/4$ over the choice of S and σ. E_2 is guaranteed to with probability at least $1 - \eta/4$ over the choice of S [20, (generalization

\footnote{Slightly sharper bounds are possible at the expense of an increased complexity of the terms.}]}
of) Thm. 3.11]. Define the event \(E_3 \) as the event in (11) for \(\gamma = \eta/4 \) and the event \(E_4 \) as the event in (11) for \(\gamma = \eta/4 \) and for \(\mathcal{F} = -\mathcal{F} \). Theorem 3.7 tells us that events \(E_3 \) and \(E_4 \) hold each with probability at least \(1 - \eta/4 \) over the choice of \(\mathcal{S} \). Thus, it follows from the union bound that the event \(E = E_1 \cap E_2 \cap E_3 \cap E_4 \) holds with probability at least \(1 - \eta \) over the choice of \(\mathcal{S} \) and \(\sigma \). Assume for the rest of the proof that the event \(E \) holds.

Because \(E \) holds, it must be \(r \geq E_\mu[\hat{R}(\mathcal{F}, \mathcal{S})] \). From this result and Thm. 3.6 we obtain

\[
\mathbb{E}_\mu \left[\sup_{f \in \mathcal{F}} \left(\hat{E}_\mathcal{S}[f] - \mathbb{E}[f] \right) \right] \leq 2 \mathbb{E}_\mu[\hat{R}(\mathcal{F}, \mathcal{S})] \leq 2r .
\]

From here, and again because \(E \), by plugging \(2r \) in place of \(E[Z] \) into (11) (for \(\gamma = \eta/4 \)), we obtain that \(\sup_{f \in \mathcal{F}} \left(\hat{E}_\mathcal{S}[f] - \mathbb{E}[f] \right) \leq \epsilon \). To show that it also holds

\[
\sup_{f \not\in \mathcal{F}} \left(\mathbb{E}[f] - \hat{E}_\mathcal{S}[f] \right) \leq \epsilon,
\]

which allows us to conclude that \(D(\mathcal{F}, \mathcal{S}, \mu) \leq \epsilon \), we repeat the reasoning above for \(-\mathcal{F}\) and use the fact that \(\hat{R}(\mathcal{F}, \mathcal{S}) = \hat{R}(-\mathcal{F}, \mathcal{S}) \), which is immediate from the definition, thus

\[
\rho \geq \hat{R}(-\mathcal{F}, \mathcal{S}) \text{ and } r \geq E_\mu[\hat{R}(-\mathcal{F}, \mathcal{S})] \quad \text{and} \quad \epsilon \geq D(-\mathcal{F}, \mathcal{S}) = \sup_{f \not\in \mathcal{F}} \left(\hat{E}_\mathcal{S}[f] - \mathbb{E}[f] \right) .
\]

The bounds in Thms. 3.1 and 3.5 depend on \(z \). This dependence can be alleviated as follows. Let \(\mathcal{F}^\circ \) denote the range-centralized family of functions obtained by shifting every function in \(\mathcal{F} \) by \(a + c/2 \), i.e.,

\[
\mathcal{F}^\circ = \left\{ g : g(x) = f(x) - a - \frac{c}{2} \text{ for } x \in \mathcal{X} \text{ and } f \in \mathcal{F} \right\} .
\]

We can use \(\hat{R}_m^\circ(\mathcal{F}^\circ, \mathcal{S}, \sigma) \) in place of \(\hat{R}_m(\mathcal{F}, \mathcal{S}, \sigma) \) in the above theorems. The results still hold for \(D(\mathcal{F}, \mathcal{S}, \mu) \) because the SD is invariant to shifting, but the bounds to the SD improve since the corresponding \(z \) for the range-centralized family is \(c/2 \), which is smaller than the one for \(\mathcal{F} \). Cousins and Riondato [9] recently introduced refined bounds that make use of empirical centralization, rather than range centralization as we do here.

While we have not considered the improved bounds mentioned above and in Section 2 for ease of presentation, our algorithms can make use of them in place of Thm. 3.5, and can also benefit of any future result in probabilistic tail bounds for the SD that employ the Rademacher average.

4 MCRAPPER

We now describe and analyze our algorithm MCRAPPER to efficiently compute the \(n \)-MCERA (see (4)) for a family \(\mathcal{F} \) with a binary relation \(\leq \) satisfying (2) and the blackbox functions children and minimal described in Sect. 3.1.

4.1 Discrepancy bounds

For \(j \in \{1, \ldots, n\} \), we denote as the \(j \)-discrepancy \(\Delta_j(f) \) of \(f \in \mathcal{F} \) on \(\mathcal{S} \) w.r.t. \(\sigma \) the quantity

\[
\Delta_j(f) = \sum_{s_i \in \mathcal{S}} \sigma_{j,i} f(s_i) .
\]

The \(j \)-discrepancy is not an anti-monotonic function, in the sense that it does not necessarily hold that \(\Delta_j(f) \geq \Delta_j(g) \) for every descendant \(g \) of \(f \in \mathcal{F} \). As an example, consider \(f \) being the constant 1 and \(g \) being the constant 0, then, for some choice of \(\sigma \), \(\Delta_j(f) \) is negative, while \(\Delta_j(g) \) is always 0.
Clearly, it holds

\[
\hat{R}_m^n(F, S, \sigma) = \frac{1}{nm} \sum_{j=1}^n \sup_{f \in F} \Delta_j(f) .
\]

(12)

A naïve computation of the \(n\)-MCERA would require enumerating all the functions in \(F\) and computing their \(j\)-discrepancies, \(1 \leq j \leq n\), in order to find each of the \(n\) suprema. We now present novel easy-to-compute upper bounds \(\overline{\Psi}(f)\) and \(\Psi_j(f)\) to \(\Delta_j(f)\) such that \(\overline{\Psi}(f) \geq \Delta_j(g)\) and \(\Psi_j(f) \geq \Delta_j(g)\) for every \(g \in d(f)\), where \(d(f)\) denote the set of the descendants of \(f\) w.r.t. \(\leq\). This key property (which is a generalization of anti-monotonicity to poset families) allows us to derive efficient algorithms for computing the \(n\)-MCERA exactly without enumerating all the functions in \(F\). Such algorithms take a branch-and-bound approach using the upper bounds to \(\Delta_j(f)\) to prune large portions of the search space (see Sect. 4.2).

For every \(j \in \{1, \ldots, n\}\) and \(i \in \{1, \ldots, m\}\), let

\[
\sigma_{j,i}^+ = \begin{cases}
1 & \text{if } \sigma_{j,i} = 1, \\
0 & \text{otherwise}
\end{cases} \quad \text{and} \quad \sigma_{j,i}^- = \begin{cases}
1 & \text{if } \sigma_{j,i} = -1, \\
0 & \text{otherwise}
\end{cases}
\]

and for every \(f \in F\) and \(x \in X\), define the functions

\[
f^+(x) = \max\{f(x), 0\} \quad \text{and} \quad f^-(x) = \min\{f(x), 0\} .
\]

It holds \(f^+(x) \geq 0\) and \(f^-(x) \leq 0\) for every \(f \in F\) and \(x \in X\). For every \(j \in \{1, \ldots, n\}\) and \(f \in F\), define

\[
\overline{\Psi}(f) = \sum_{s_i \in S} |f(s_i)| \quad \text{and} \quad \Psi_j(f) = \sum_{s_i \in S} \sigma_{j,i}^+ f^+(s_i) - \sum_{s_i \in S} \sigma_{j,i}^- f^-(s_i) .
\]

(13)

Computationally, these quantities are extremely straightforward to obtain. Both \(\overline{\Psi}(f)\) and \(\Psi_j(f)\) are upper bounds to \(\Delta_j(f)\) and to \(\Delta_j(g)\) for every \(g \in d(f)\).

Theorem 4.1. For any \(f \in F\) and \(j \in \{1, \ldots, n\}\), it holds

\[
\max \{\Delta_j(g) : g \in d(f) \cup \{f\}\} \leq \Psi_j(f) \leq \overline{\Psi}(f) .
\]

Proof. It is immediate from the definitions of \(\overline{\Psi}(f)\) and \(\Psi_j(f)\) in (13) that \(\Psi_j(f) \leq \overline{\Psi}(f)\), so we can focus on \(\Psi_j(f)\). We start by showing that \(\Delta_j(f) \leq \Psi_j(f)\). It holds

\[
\Delta_j(f) = \sum_{s_i \in S} \sigma_{j,i}^+ f^+(s_i) - \sum_{s_i \in S} \sigma_{j,i}^- f^-(s_i)\]

\[
\leq \sum_{s_i \in S} \sigma_{j,i}^+ f^+(s_i) - \sum_{s_i \in S} \sigma_{j,i}^- f^-(s_i) = \Psi_j(f)
\]

where the inequality comes from the fact that \(\sum_{s_i \in S} \sigma_{j,i}^+ f^+(s_i) \geq 0\), and \(\sum_{s_i \in S} \sigma_{j,i}^- f^-(s_i) \leq 0\).

To prove that \(\Delta_j(g) \leq \Psi_j(f)\) for every \(g \in d(f)\), it is sufficient to show that \(\Psi_j(g) \leq \Psi_j(f)\) holds for every such \(g\), since we just showed that \(\Delta_j(g) \leq \Psi_j(g)\) is true for any \(g \in F\). It holds \(f \leq g\), so from the definition of the relation \(\leq\) in (2), we get

\[
\Psi_j(g) = \sum_{s_i \in S} \sigma_{j,i}^+ g^+(s_i) - \sum_{s_i \in S} \sigma_{j,i}^- g^-(s_i)
\]

\[
\leq \sum_{s_i \in S} \sigma_{j,i}^+ f^+(s_i) - \sum_{s_i \in S} \sigma_{j,i}^- f^-(s_i) = \Psi_j(f)
\]

which completes our proof. \(\square\)
The bounds we derived in this section are deterministic. An interesting direction for future research is how to obtain sharper probabilistic bounds.

4.2 Algorithms

We now use the discrepancy bounds $\overline{\Psi}(\cdot)$ and $\Psi_j(\cdot)$ from Sect. 4.1 in our algorithm MCRAPPER for computing the exact n-MCERA. As the real problem is usually not to only compute the n-MCERA but to actually compute an upper bound to the SD, our description of MCRAPPER includes this final step. By including this step we can also fairly compare MCRAPPER with existing algorithms that use deterministic bounds to the ERA to compute an upper bound to the SD (see also Sect. 6).

MCRAPPER offers probabilistic guarantees on the quality of the bound to the SD it computes (proof deferred to after the presentation).

Theorem 4.2. Let $\delta \in (0, 1)$. With probability at least $1 - \delta$ over the choice of \mathcal{S} and of σ, the value ϵ returned by MCRAPPER is such that $D(\mathcal{F}, \mathcal{S}, \mu) \leq \epsilon$.

The pseudocode of MCRAPPER is presented in Alg. 1. The division in functions is useful for reusing parts of the algorithm in later sections (e.g., Alg. 3). After having sampled the $n \times m$ matrix of i.i.d. Rademacher random variables (line 1), the algorithm calls the function getSupDevBound with appropriate parameters, which in turn calls the function getNMCERA, the real heart of the algorithm. This function computes the n-MCERA $\hat{R}_n^\epsilon(\mathcal{F}, \mathcal{S}, \sigma)$ by exploring and pruning the search space (i.e., \mathcal{F}) according to the order of the elements in the priority queue Q (line 8). One possibility is to explore the space in Breadth-First-Search order (so Q is just a FIFO queue), while another is to use the upper bound $\overline{\Psi}(f)$ as the priority, with the top element in the queue being the one with maximum priority among those in the queue. Other orders are possible, but we assume that the order is such that all parents of a function are explored before the function, which is reasonable to ensure maximum pruning, and is satisfied by the two mentioned orders. We assume that the priority queue also has a method delete(e) to delete an element e in the queue. This requirement could be avoided with some additional book-keeping, but it simplifies the presentation of the algorithm.

The algorithm maintains in the variables v_j, $j \in \{1, \ldots, n\}$, the currently best available lower bound to the quantity $\sup_{f \in \mathcal{F}} \Delta_j(f)$ (see (12)). Initially, these variables are all set to $-\infty$, the lowest possible value of a discrepancy (line 9). MCRAPPER also maintains a dictionary \mathcal{J} (line 10), initially empty, whose keys will be elements of \mathcal{F} and the values are subsets of $\{1, \ldots, n\}$. The value associated to a key f in the dictionary is a superset of the set of values $j \in \{1, \ldots, n\}$ for which $\overline{\Psi}(f) \geq v_j$, i.e., for which f or one of its descendants may be the function attaining the supremum j-discrepancy among all the functions in \mathcal{F} (see (12)). A function and all its descendants are pruned when this set is the empty set. The set of keys of the dictionary \mathcal{J} is, at all times, the set of all and only the functions in \mathcal{F} that have ever been added to Q. The last data structure is the set H (line 11), initially empty, which will contain pruned elements of \mathcal{F}, in order to avoid visiting either them or their descendants.

MCRAPPER populates Q and \mathcal{J} by inserting into them the minimal elements of \mathcal{F} w.r.t. \leq (line 12), using the set $\{1, \ldots, n\}$ as the value for each of these keys in the dictionary \mathcal{J}. It then enters a loop that keeps iterating as long as there are elements in Q (line 15). The top element f of Q is extracted at the beginning of each iteration (line 16). A set Y, initially empty, is created to maintain a superset of the set of values $j \in \{1, \ldots, n\}$ for which a child of f may be the function attaining the supremum j-discrepancy among all the functions in \mathcal{F} (see (12)). The algorithm then iterates over the elements $j \in \mathcal{J}[f]$ s.t. $\overline{\Psi}(f)$ is greater than v_j (line 18). The elements for which $\overline{\Psi}(f) < v_j$ can be ignored because f and its descendants can not attain the supremum of the j-discrepancy in this case, thanks to Thm. 4.1. Computing $\overline{\Psi}(f)$ is straightforward and can be done even faster if one keeps a frequent-pattern tree or a similar data structure to avoid having to scan \mathcal{S} all the times,
Algorithm 1: MCRapper

Input: Poset family \mathcal{F}, sample S of size m, $\delta \in (0, 1)$, $n \geq 1$
Output: Upper bound to $D(\mathcal{F}, S, \mu)$ with probability $\geq 1 - \delta$.

1. $\sigma \leftarrow \text{draw}(m, n)$
2. $\epsilon \leftarrow \text{getSupDevBound}(\mathcal{F}, S, \delta, \sigma)$
3. return ϵ

Function getSupDevBound($\mathcal{F}, S, \delta, \sigma$):

5. $\tilde{R} \leftarrow \text{getNMCERA}(\mathcal{F}, S, \sigma) + 2z \sqrt{\frac{\ln(4/\delta)}{2nm}}$
6. return r.h.s. of (6) using $\eta = \delta$

Function getNMCERA(\mathcal{F}, S, σ):

8. $Q \leftarrow$ empty priority queue
9. foreach $j \in \{1, \ldots, n\}$ do $\nu_j \leftarrow -zm$
10. $\mathcal{J} \leftarrow$ empty dictionary from \mathcal{F} to subsets of $\{1, \ldots, n\}$
11. $H \leftarrow \emptyset$
12. foreach $f \in \text{minimals}(\mathcal{F})$ do Q.push(f)
13. $\mathcal{J}[f] \leftarrow \{1, \ldots, n\}$
14. while Q is not empty do $f \leftarrow Q$.pop()
15. $Y \leftarrow \emptyset$
16. foreach $j \in \mathcal{J}[f]$ s.t. $\Psi_j(f) \geq \nu_j$ do
17. if $\Psi_j(f) \geq \nu_j$ then $\nu_j \leftarrow \max\{\nu_j, \Delta_j(f)\}$
18. $Y \leftarrow Y \cup \{j\}$
19. foreach $g \in \text{children}(f) \setminus H$ do
20. if $g \in \mathcal{J}$ then $N \leftarrow \mathcal{J}[g] \cap Y$ else $N \leftarrow Y$
21. if $N = \emptyset$ then $H \leftarrow H \cup \{g\}$
22. if $g \in \mathcal{J}$ then Q.delete(g)
23. else $\mathcal{J}[g] \leftarrow N$
24. return $\frac{1}{nm} \sum_{j=1}^{n} \nu_j$

but we do not discuss this case for ease of presentation. For each value j that satisfies the condition on line 18, the algorithm computes $\Delta_j(f)$ and updates ν_j to this value if larger than the current value of ν_j (line 20), to maintain the invariant that ν_j stores the highest value of j-discrepancy seen so far (this invariant, together with the one maintained by the pruning strategy, is at the basis of the correctness of MCRapper, see the proof of Lemma 4.3). Finally, j is added to the set Y (line 21), as it may still be the case that a descendant of f has j-discrepancy higher than ν_j. The algorithm then iterates over the children of f that have not been pruned, i.e., those not in H (line 22). If the child g is such that there is a key g in \mathcal{J} (because before f we visited another parent of g), then let N be $\mathcal{J}[g] \cap Y$, otherwise, let N be Y. The set N is a superset of the indices j s.t. g may attain the supremum j-discrepancy. Indeed, for a value j to have this property, it is necessary that $\Psi_j(f) \geq \nu_j$
for every parent \(f \) of \(j \) (where the value of \(v_j \) in this expression is the one that \(v_j \) had when \(f \) was visited). If \(N = \emptyset \), then \(g \) and all its descendants can be pruned, which is achieved by adding \(g \) to \(H \) (line 25) and removing \(g \) from \(Q \) if it is a key \(\mathcal{J} \) (line 26). When \(N \neq \emptyset \), first \(g \) is added to \(Q \) (with the appropriate priority depending on the ordering of \(Q \)) if it did not belong to \(\mathcal{J} \) yet (line 28), and then \(\mathcal{J}[g] \) is set to \(N \) (line 29). This operation completes the current loop iteration starting at line 15.

Once \(Q \) is empty, the loop ends and the function \(\text{getNMERA} \) returns the sum of the values \(v_j \) divided by \(n \cdot m \). The returned value is summed to an appropriate term to obtain \(\hat{R} \) (line 5), which is used to compute the return value \(\varepsilon \) of the function \(\text{getSupDevBound} \) using (6) with \(\eta = \delta \) (line 6). This value \(\varepsilon \) is returned by \(\text{MCRAPPER} \) when it terminates (line 2).

The following result is at the core of the correctness of \(\text{MCRAPPER} \).

Lemma 4.3. \(\text{getNMERA}(\mathcal{F}, S, \sigma) \) returns the value \(\hat{R}_m(S, \sigma) \).

Proof. For \(j \in \{1, \ldots, n\} \), let \(h_j \) be any of the functions attaining the supremum in \(\sup_{f \in \mathcal{F}} \Delta_j(f) \). We need to show that the algorithm updates \(v_j \) on line 20 of Alg. 1 using \(\Delta_j(h_j) \) at some point during its execution. We focus on a single \(j \), as the proof is the same for any value of \(j \).

It is evident from the description of the algorithm that \(v_j \) is always only set to values of \(\Delta_j(g) \), and since \(h_j \) has the maximum of these values, \(v_j \) will be, at any point in the execution of the algorithm less than or equal to \(\Delta_j(h_j) \). Let’s call this fact \(F_1 \). Thus, if the algorithm ever hits line 20 with \(f = h_j \), then we can be sure that the value stored in \(v_j \) will be \(\Delta_j(h_j) \), and this variable will never take an higher value. From fact \(F_1 \) and Thm. 4.1 we also have that at any point in time it must be \(v_j \leq \Psi_j(h_j) \leq \overline{\Psi}(h_j) \), so the conditions on lines 19 and 18 are definitively satisfied, so the question is now whether \(j \in \mathcal{J}[h_j] \) and whether there is an iteration of the \textbf{while} loop of line 15 for which \(f = h_j \).

It holds from Thm. 4.1 that it must be \(\Delta_j(h_j) \leq \Psi_j(g) \leq \overline{\Psi}(g) \) for every ancestor \(g \) of \(h_j \). From this fact and from fact \(F_1 \) then it holds that at any point in time it must hold \(v_j\Psi_j(g) \leq \overline{\Psi}(g) \) for every such ancestor \(g \) of \(h_j \). Thus, the value \(j \) is always added to the set \(Y \) at every iteration of the \textbf{while} loop of line 15 for which \(f \) is an ancestor of \(h_j \). Let’s call this fact \(F_2 \). Thus, as long as no ancestor of \(h_j \) is pruned or \(h_j \) itself is pruned, \(j \) is guaranteed to be in \(\mathcal{J}[h_j] \). But from fact \(F_2 \) and from the fact that \(j \) belongs to \(\mathcal{J}[f] \) for all the ancestors of \(h_j \) that are in \(\text{minimals}(f) \) (line 14), then \(j \) must belong to the set \(N \) computed on line 23 for all ancestors of \(h_j \), thus \(N \) is never empty and therefore no ancestor of \(h_j \) is ever pruned and neither is \(f \) and we are guaranteed that \(h_j \) is added to \(Q \) on line 28 when the first of its parents is visited. Thus, there is an iteration of the \textbf{while} loop of line 15 that has \(f = h_j \), and because of what we discussed above, then it will be the case that \(v_j = \Delta_j(h_j) \) and our proof is complete.

The proof of Thm. 4.2 is then just an application of Lemma 4.3 and Thm. 3.1 (with \(\eta = \delta \)), as the value \(\varepsilon \) returned by \(\text{MCRAPPER} \) is computed according to (6).

4.2.1 Limiting the exploration of the search space.

Despite the very efficient pruning strategy made possible by the upper bounds to the \(j \)-discrepancy, \(\text{MCRAPPER} \) may still need to explore a large fraction of the search space, with negative impact on the running time. We now present a "hybrid" approach that limits this exploration, while still ensuring the guarantees from Thm. 4.2.

Let \(\beta \) be any positive value and define

\[
\mathcal{G}(S, \beta) = \left\{ f \in \mathcal{F} : \frac{1}{m} \sum_{i=1}^{m} (f(s_i))^2 \geq \beta \right\},
\]

and \(\mathcal{K}(S, \beta) = \mathcal{F} \setminus \mathcal{G}(S, \beta) \). In the case of itemsets mining, \(\mathcal{G}(S, \beta) \) would be the set of frequent itemsets w.r.t. \(\beta \in [0,1] \), as \((f(s_i))^2 = f(s_i) \) in this case.

The following result is a consequence of Hoeffding’s inequality and a union bound over \(n \cdot |\mathcal{K}(S, \beta)| \) events.

Lemma 4.4. Let \(\eta \in (0, 1) \). Then, with probability at least \(1 - \eta \) over the choice of \(\sigma \), it holds that simultaneously for every \(j \in \{1, \ldots, n\} \),

\[
\hat{R}_m^1(\mathcal{K}(S, \beta), S, \sigma_j) \leq \sqrt{\frac{2\beta \log \left(\frac{n|\mathcal{K}(S, \beta)|}{\eta} \right)}{m}}.
\] (14)

The following is an immediate consequence of the above and the definition of \(n\text{-MCERA} \).

Theorem 4.5. Let \(\eta \in (0, 1) \). Then with probability \(\geq 1 - \eta \) over the choice of \(\sigma \), it holds

\[
\hat{R}_m^n(\mathcal{F}, S, \sigma) = \frac{1}{n} \sum_{j=1}^{n} \max \left\{ \hat{R}_m^1(\mathcal{G}(S, \beta), S, \sigma_j), \hat{R}_m^1(\mathcal{K}(S, \beta), S, \sigma_j) \right\}
\leq \frac{1}{n} \sum_{j=1}^{n} \max \left\{ \hat{R}_m^1(\mathcal{G}(S, \beta), S, \sigma_j), \sqrt{\frac{2\beta \log \left(\frac{n|\mathcal{K}(S, \beta)|}{\eta} \right)}{m}} \right\}.
\]

The result of Thm. 4.5 is especially useful in situations when it is possible to compute efficiently reasonable upper bounds on the cardinality of \(\mathcal{K}(S, \beta) \), possibly using information from \(S \) (but not \(\sigma \)). For the case of pattern mining, these bounds are often easy to obtain: e.g., in the case of itemsets, it holds \(|\mathcal{K}(S, \beta)| \leq \sum_{s_i \in S} 2^{s|s_i|} \), where \(|s_i| \) is the number of items in the transaction \(s_i \). It may be possible to derive much stricter bounds at the expense of complexity in their computation and their presentation. For these reasons, we do not further explore such approaches, but it could be an interesting direction for future work, possibly with other applications.

Combining these observations with MCRapper may lead to a significant speed-up thanks to the fact that MCRapper would be exploring only (a subset of) \(\mathcal{G}(S, \beta) \) instead of (a subset of) the entire search space \(\mathcal{F} \), at the cost of computing an upper bound to \(\hat{R}_m^n(\mathcal{F}, S, \sigma) \), rather than its exact value (the upper bound can still be used for computing an upper bound to the SD). We study this trade-off, which is governed by the choice of \(\beta \), experimentally in Sect. 6.3.

We now describe this variant MCRapper-H of MCRapper, presented in Alg. 2. MCRapper-H accepts in input the same parameters of MCRapper, but also the parameters \(\beta \) and \(\gamma < \delta \), which controls the confidence of the probabilistic bound from Thm. 4.5. After having drawn \(\sigma \), MCRapper-H computes the upper bound to \(|\mathcal{K}(S, \beta)| \) (line 3), and calls the function \(\text{getNMCERA}(\mathcal{G}(S, \beta), S, \sigma) \) (line 2), slightly modified w.r.t. the one on line 30 of Alg. 1 so it returns the set of \(n \) values \(\{v_1, \ldots, v_n\} \) instead of their average. Then, MCRapper-H computes \(\hat{R} \) using the r.h.s. of (14) and returns the bound to the SD obtained from the r.h.s. of (6) with \(\eta = \delta - \gamma \).

The correctness of MCRapper-H, i.e., the fact that it offers the same properties as MCRapper from Thm. 4.2, follows from Thms. 3.1, 4.2 and 4.5, and an application of the union bound.

Once again, considering the \(n\text{-MCERA} \) \(\hat{R}_m^n(\mathcal{F}^\circ, S, \sigma) \) of the centralized family \(\mathcal{F}^\circ \) in place of that of \(\mathcal{F} \) allow us to use smaller constants when computing bounds to the SD \(D(\mathcal{F}, S, \mu) \) (see end of Sect. 3.2). The following is a variant of Thm. 4.5 for bounding \(\hat{R}_m^n(\mathcal{F}^\circ, S, \sigma) \), and can be used in place of Thm. 4.5 in MCRapper-H.
Theorem 4.6. Let \(\eta \in (0, 1) \). Then with probability \(\geq 1 - \eta \) over the choice of \(\sigma \), it holds

\[
\hat{R}_n^m(\mathcal{F}^\circ, S, \sigma) \leq \frac{1}{n} \sum_{j=1}^{n} \max \left\{ \hat{R}_m^1(\mathcal{G}(S, \beta), S, \sigma_j), \sqrt{\frac{2\beta \log (n|\mathcal{K}(S, \beta)|)}{m}} \right\} \\
- \frac{1}{n} \sum_{j=1}^{n} \frac{1}{m} \sum_{s_i \in S} \sigma_{j,i} \left(a + \frac{c}{2}\right).
\]

Proof. From the definition of \(n \)-MCERA and of \(\mathcal{F}^\circ \), it holds

\[
\hat{R}_n^m(\mathcal{F}^\circ, S, \sigma) = \frac{1}{n} \sum_{j=1}^{n} \sup_{f \in \mathcal{F}} \left\{ \frac{1}{m} \sum_{s_i \in S} \sigma_{j,i} f(s_i) - \frac{1}{m} \sum_{s_i \in S} \sigma_{j,i} \left(a + \frac{c}{2}\right) \right\}
\]

\[
= \frac{1}{n} \sum_{j=1}^{n} \left\{ \sup_{f \in \mathcal{F}} \left\{ \frac{1}{m} \sum_{s_i \in S} \sigma_{j,i} f(s_i) - \frac{1}{m} \sum_{s_i \in S} \sigma_{j,i} \left(a + \frac{c}{2}\right) \right\} \right\}
\]

\[
= \hat{R}_n^m(\mathcal{F}, S, \sigma) - \frac{1}{n} \sum_{j=1}^{n} \frac{1}{m} \sum_{s_i \in S} \sigma_{j,i} \left(a + \frac{c}{2}\right).
\]

The thesis then follows by applying Thm. 4.5 to the r.h.s. \(\square \)

Algorithm 2: MCRapper-H

Input: Poset family \(\mathcal{F} \), sample \(S \) of size \(m \), \(\delta \in (0, 1) \), \(\beta \in [0, z^2] \), \(\gamma \in (0, \delta) \)

Output: Upper bound to \(D(\mathcal{F}, S, \mu) \) with prob. \(\geq 1 - \delta \).

1. \(\sigma \leftarrow \text{draw}(m, n) \)
2. \(\{v_1, \ldots, v_n\} \leftarrow \text{getNMCERA}(\mathcal{G}(S, \beta), S, \sigma) \quad \text{// Modified w.r.t. Alg. 1. See text.} \)
3. \(\omega \leftarrow \text{upper bound to } |\mathcal{K}(S, \beta)| \)
4. \(\tilde{R} \leftarrow \frac{1}{n} \sum_{j=1}^{n} \max \left\{ \frac{v_j}{m}, \sqrt{\frac{2\beta \log (n/m)}{m}} \right\} + 2z \sqrt{\frac{\ln (\frac{1}{\delta})}{2mn}} \)
5. **return** r.h.s. of (6) using \(\eta = \delta - \gamma \)

It is not necessary to choose \(\beta \) a-priori, as long as it is chosen without using any information that depends on \(\sigma \). In situations where deciding \(\beta \) a-priori is not easy, one may define instead, for a given value of \(k \) set by the user, the quantity \(\beta_k \) defined as

\[
\beta_k = \min \{ \beta : |\mathcal{G}(S, \beta)| \leq k \}.
\]

When the queue \(Q \) (line 8 of Alg. 1) is sorted by decreasing value of \(\sum_{i=1}^{n} (f(s_i))^2 \), the value \(k \) is the maximum number of nodes the branch-and-bound search in getNMCERA may enumerate. Obtaining more refined bounds than Thm. 4.5 is an interesting research direction.
We now show that this event holds with probability at least 1 when

following the same steps as for

Using linearity of expectation and the fact that the

Theorem 4.7. Let \(\eta \in (0, 1) \). With probability at least \(1 - \eta \) over the choice of \(S \) and \(\sigma \), it holds that

\[
\mathbb{P}(\mathcal{F}, S, \mu) \leq 2 \hat{R}_m^1(\mathcal{F}^\circ, S, \sigma) + 3c \sqrt{\frac{\ln \frac{2}{\eta}}{2m}}.
\]

The argument of the (outer) expectation on the l.h.s. can be seen as a function \(h \) of the \(m \) pairs of r.v.’s \((\sigma_{1,1}, s_1), \ldots, (\sigma_{1,m}, s_m)\). Fix any possible assignment \(\nu' \) of values to these pairs. Consider now a second assignment \(\nu'' \) obtained from \(\nu' \) by changing the value of any of the pairs with any other value in \(\{-1,1\} \times X \). We want to show that it holds \(|h(\nu') - h(\nu'')| \leq 3c/m \).

We separate handling the SD and the 1-MCERA, as both depend on the values of the assignment of values to the pairs. The SD does not depend on \(\sigma_{1,1} \), and in the argument of the supremum, changing any \(s_j \) impacts a single summand of the empirical mean \(\hat{g} \), with maximal change when \(g(s_j) \) goes from \(-c/2\) to \(c/2\) (or vice versa), thus the SD itself changes by no more than \(c/m \).

We now consider the 1-MCERA, and assume that the pair changing value is \((\sigma_{1,j}, s_j)\). Then the only term of the 1-MCERA sum that changes is the \(j \)-th term. If only the first component of the pair changes value (i.e., \(\sigma_{1,j} \) goes from 1 to \(-1\) or vice versa, i.e., from \(\sigma_{1,j} \) to \(-\sigma_{1,j} \)), then the \(j \)-th term in the 1-MCERA sum cannot change by more than \(c \), because it holds \(|\sigma_{1,j} g(s_j) - (-\sigma_{1,j} g(s_j))| \leq c \). If only the second component of the pair changes value (i.e., \(s_j \) changes value to \(s_j' \)), then the \(j \)-th term in the 1-MCERA sum cannot change by more than \(c \), because each function \(g \in \mathcal{F} \) goes from \(X \) to \([-c/2, c/2]\), and it must be \(|\sigma_{1,j} g(s_j) - (-\sigma_{1,j} g(s_j'))| \leq c \).

By adding the maximum change in the SD (i.e., \(e/m \)) and the maximum change in twice the 1-MCERA (i.e., \(2e/m \)), we can conclude that function \(h \) satisfies the requirements of McDiarmid’s inequality (Thm. 3.2) with constants \(3e/m \), and obtain that event \(E_1 \) from (16) holds with probability at least \(1 - \eta/2 \).

Let \(-\mathcal{F}^\circ\) represent the family of functions containing \(-g\) for each \(g \in \mathcal{F}^\circ \). Consider the event

\[
E_2 \equiv \sup_{g \in -\mathcal{F}^\circ} \left(\hat{g} - \mathbb{E}[g] \right) \leq 2 \hat{R}_m^1(-\mathcal{F}^\circ, S, -\sigma) + 3c \sqrt{\frac{\ln \frac{2}{\eta}}{2m}}.
\]

Following the same steps as for \(E_1 \), we have that \(E_2 \) holds with probability at least \(1 - \eta/2 \), as the fact that we are considering \(\hat{R}_m^1(-\mathcal{F}^\circ, S, -\sigma) \) rather than \(\hat{R}_m^1(-\mathcal{F}^\circ, S, \sigma) \) is not influential.
It is easy to see that
\[\hat{R}_m^1(-F \circ, S, -\sigma) = \hat{R}_m^1(F \circ, S, \sigma) \], and that
\[\sup_{g \in F \circ} \left(\frac{E_S[g]}{\mu} - E_S[f] \right) = \sup_{g \in F \circ} \left(\frac{E_S[g]}{\mu} - E_S[f] \right) \].

Thus we can rewrite \(E_2 \) as
\[E_2 = \sup_{g \in F \circ} \left(\frac{E_S[g]}{\mu} - E_S[f] \right) \leq 2 \hat{R}_m^1(F \circ, S, \sigma) + 3\sqrt{\ln \frac{2}{\eta^2}} \frac{\ln 2}{2m} . \]

From the union bound, we have that \(E_1 \) and \(E_2 \) hold simultaneously with probability at least \(1 - \eta \), i.e., the following event holds with probability at least \(1 - \eta \)
\[D(F \circ, S, \mu) \leq 2 \hat{R}_m^1(F \circ, S, \sigma) + 3\sqrt{\frac{\ln \frac{2}{\eta^2}}{2m}} . \]

The thesis then follows from the fact \(D(F, S, \mu) = D(F \circ, S, \mu) \). \(\square \)

The advantage of (15) over (6) (with \(n = 1 \)) is in the smaller “tail bounds” terms that arise thanks to a single application of a probabilistic tail bound, rather than three such applications. To use this result in MCRapper, line 2 must be replaced with
\[\epsilon \leftarrow \text{getNMCERA}(F, S, \sigma) + 3\sqrt{\ln \frac{2}{\eta^2}} \frac{\ln 2}{2m} ; \]

so the upper bound to the SD is computed according to (15). The same guarantees as in Thm. 4.2 hold for this modified algorithm.

5 APPLICATIONS

To showcase MCRapper’s practical strengths, we now discuss applications to various pattern mining tasks. The value \(\epsilon \) computed by MCRapper can be used, for example, to obtain, from a small random sample \(S \) of a large dataset, a high-quality approximation of the collection of frequent itemsets in the dataset w.r.t. a frequency threshold \(\theta \in (0, 1) \), by quickly mining the small sample at frequency \(\theta - \epsilon / 2 \) [25]. Also, it can be used in the algorithm by Pellegrina et al. [23] to achieve statistical power in significant pattern mining, or in the progressive algorithm by Servan-Schreiber et al. [32] to enable even more accurate interactive data exploration. Essentially any of the tasks we mentioned in Sect. 1 and 2 would benefit from the improved bound to the SD computed by MCRapper. To support this claim, we discuss in depth one specific application.

Mining True Frequent Patterns. We now show how to use MCRapper together with sharp variance-aware bounds to the SD (Thm. 3.5) for the specific application of identifying the True Frequent Patterns (TFPs) [27]. The original work considered the problem only for itemsets, but we solve the problem for a generic poset family \(F \) of functions with a relation \(\leq \), that, in addition to (2), also satisfies anti-monotonicity, i.e., we require that for any \(f, g \in F \) such that \(f \leq g \), it also holds \(f(x) \geq g(x) \) for any \(x \in X \). This condition is more restrictive than the one in (2), but it is satisfied by many pattern classes For ease for presentation we assume, w.l.o.g., that the functions in \(F \) map the domain \(X \) to \([0, 1]\). We also assume that the projection of \(F \) on the bag \(S \) (i.e., on the dataset) is finite, that is, the set of \(|S| \)-dimensional vectors \(\{(f(s_1), \ldots, f(s_j)), f \in F \} \) is finite.

This condition is satisfied in most practical applications.
The task of TFP mining is, given a pattern language \mathcal{L} (i.e., a function family with the properties discussed above) and a threshold $\theta \in [0, 1]$, to output the set

$$\text{TFP} (\theta, \mathcal{L}) = \left\{ f \in \mathcal{L} : \mathbb{E}_\mu[f] \geq \theta \right\}.$$

Computing TFP (θ, \mathcal{L}) exactly requires to know $\mathbb{E}_\mu[f]$ for every $f \in \mathcal{L}$; since this assumption is unrealistic, it is only possible to compute an approximation of TFP (θ, \mathcal{L}) using information available from a random bag \mathcal{S} of m i.i.d. samples from μ. In this work, mimicking the guarantees given in significant pattern mining [14] and in multiple hypothesis testing settings, we are interested in approximations that are a subset of TFP(θ, \mathcal{L}), i.e., we do not want false positives in our approximation, but we accept false negatives. Due to the randomness in the generation of \mathcal{S}, no algorithm can guarantee to compute a (non-trivial) subset of TFP(θ, \mathcal{L}) from every possible \mathcal{S}. Thus, one has to accept that there is a probability over the choice of \mathcal{S} and other random choices made by the algorithm to obtain a set of patterns that is not a subset of TFP(θ, \mathcal{L}). We now present an algorithm TFP-R with the following guarantee (proof presented after the description of the algorithm).

Theorem 5.1. Given $\mathcal{L}, \mathcal{S}, \theta \in [0, 1], \delta_1, \delta_2 \in (0, 1)$, and a number $n \geq 1$ of Monte-Carlo trials, TFP-R returns a set \mathcal{T} such that

$$\Pr_{S, \sigma} (\mathcal{T} \subseteq \text{TFP}(\theta, \mathcal{L})) \geq 1 - (\delta_1 + \delta_2),$$

where the probability is over the choice of both \mathcal{S} and the randomness in TFP-R, i.e., an $n \times m$ matrix of i.i.d. Rademacher variables σ.

Here is the intuition for the proof. For any set $A \subseteq \mathcal{L}$ such that, for any $f \in A$, all ancestors of f also belong to A, the negative border $B^{-}(A)$ of A is the set containing every function $f \in \mathcal{L}\setminus A$ such that every parent w.r.t. \preceq of f belongs to A, and the positive border $B^{+}(A)$ of A is the set containing every function $f \in A$ such that no child of f belongs to A [18]. If we can compute $\hat{\varepsilon}_u, \hat{\varepsilon}_t \in (0, 1)$ such that, for every $f \in B^{-}(\text{TFP}(\theta, \mathcal{L})), \theta - \hat{\varepsilon}_t \leq \mathbb{E}_S[f] \leq \theta + \hat{\varepsilon}_u$, then, by the anti-monotonicity property, we can be sure that any $g \in \mathcal{L}$ such that $\mathbb{E}_S[g] \geq \theta + \hat{\varepsilon}_u$ belongs to TFP(θ, \mathcal{L}).

This guarantee will naturally be probabilistic, for the reasons we already discussed. Since $B^{-}(\text{TFP}(\theta, \mathcal{L}))$ is unknown, TFP-R approximates it by progressively, by refining a superset \hat{B}^{-} of it, starting from \mathcal{L}. The cardinality of the superset \hat{B}^{-} directly impacts the value $\hat{\varepsilon}_u$ defined above. In order to limit the cardinality of \hat{B}^{-}, TFP-R maintains a superset \hat{B}^{+} approximating $B^{+}(\text{TFP}(\theta, \mathcal{L}))$, refined progressively as well. The correctness of TFP-R is based on the fact that at every point in the execution, it holds $B^{-}(\text{TFP}(\theta, \mathcal{L})) \subseteq \hat{B}^{-}$, as we show in the proof of Thm. 5.1.

The pseudocode of TFP-R is presented in Alg. 3. We assume to have a function getVarianceBound that, given two quantities κ and λ, with $\kappa < \lambda$, returns an upper bound to the variance of every function $f \in \mathcal{L}$ with $\kappa \leq \mathbb{E}_\mu[f] \leq \lambda$. This assumption is reasonable: in the general case, Popoviciu’s inequality tells us that any random variable taking values in $[a, b]$ has variance at most $(b - a)^2/4$, while much better bounds can be obtained in specific cases, e.g., when the functions in \mathcal{F} only take value in $\{0, 1\}$ (as is the case for itemsets and many other patterns), then a strict upper bound is

$$\text{getVarianceBound}(\kappa, \lambda) \doteq \begin{cases}
\lambda(1 - \lambda) & \text{if } \lambda \leq \frac{1}{2} \\
\kappa(1 - \kappa) & \text{if } \kappa \geq \frac{1}{2} \\
\frac{1}{4} & \text{otherwise.}
\end{cases}$$
Algorithm 3: TFP-R

Input: Poset family \mathcal{L}, sample S of size m, $\theta \in [0,1]$, $\delta_1, \delta_2 \in (0,1)$, $n \geq 1$.
Output: A set \mathcal{T} of patterns with the properties described in Thm. 5.1.

1. $\sigma \leftarrow \text{draw}(m, n)$
2. $\mathcal{T} \leftarrow \emptyset$
3. $\hat{B}^- \leftarrow \mathcal{L}$
4. $\hat{B}^+ \leftarrow \mathcal{L}$
5. $\nu^- \leftarrow \text{getVarianceBound}(0, \theta)$
6. $\nu^+ \leftarrow \text{getVarianceBound}(\theta, 1)$
7. repeat
 8. $\hat{\epsilon}_u \leftarrow \text{getSupDevBoundVar}(\hat{B}^-, S, \delta_1, \sigma, \nu^-)$
 9. $\hat{\epsilon}_t \leftarrow \text{getSupDevBoundVar}(\hat{B}^+, S, \delta_2, \sigma, \nu^+)$
 10. $\mathcal{T} \leftarrow \mathcal{T} \cup \{f \in \hat{B}^+: \hat{E}_S[f] > \theta + \hat{\epsilon}_u\}$
 11. $\mathcal{H} \leftarrow \{f \in \mathcal{H} : \hat{E}_S[f] \in [\theta - \hat{\epsilon}_t, \theta + \hat{\epsilon}_u]\}$
 12. $\hat{B}^-_{\text{prev}} \leftarrow \hat{B}^-$
 13. $\hat{B}^- \leftarrow \mathcal{H} \cup B^- (\mathcal{T} \cup \mathcal{H})$
 14. $\hat{B}^+_{\text{prev}} \leftarrow \hat{B}^+$
 15. $\hat{B}^+ \leftarrow \mathcal{H} \cup B^+ (\mathcal{T})$
 16. $\hat{\varepsilon} \leftarrow \min(\hat{E}_S[f] : f \in \hat{B}^-)$
 17. $\hat{\varepsilon} \leftarrow \max(\hat{E}_S[f] : f \in \hat{B}^+)$
 18. $\nu^- \leftarrow \text{getVarianceBound}(\hat{\varepsilon} - \hat{\epsilon}_u, \theta)$
 19. $\nu^+ \leftarrow \text{getVarianceBound}(\theta, \hat{\varepsilon} + \hat{\epsilon}_t)$
8. until $\hat{B}^+ = \hat{B}^+_{\text{prev}}$ and $\hat{B}^- = \hat{B}^-_{\text{prev}}$
21. return \mathcal{T}

The algorithm first draws the matrix σ (line 1) and initializes \mathcal{T} to the empty set (line 2). Patterns are added to \mathcal{T} throughout the execution of the algorithm, and \mathcal{T} is returned in output at the end. The algorithm then initializes the sets \hat{B}^- and \hat{B}^+ to \mathcal{L} (lines 3-4). It also initializes the scalar ν^- and ν^+ to be, respectively an upper bound to the variances of all functions $f \in \mathcal{L}$ with expectation $\mathbb{E}_\mu[f]$ lower than θ, and an upper bound to the variances of all functions $f \in \mathcal{L}$ with expectation $\mathbb{E}_\mu[f]$ higher than θ (recall that we are assuming, w.l.o.g., that the functions in \mathcal{L} go from X to $[0,1]$). TFP-R then enters a loop (line 7). At each iteration of the loop, TFP-R calls the function getSupDevBoundVar which returns a value $\hat{\epsilon}_u$ computed as in (10) using $\mathcal{F} = \hat{B}^-$, and $\eta = \delta_1$ (line 8). It then calls the function getSupDevBoundVar to compute a value $\hat{\epsilon}_t$ computed as in (10) using $\mathcal{F} = \hat{B}^+$, and $\eta = \delta_2$ (line 9). The function getNMCERA from Alg. 1 is used inside of getSupDevBoundVar (with the specified parameters) to compute the n-MCERA in the value ρ from (9). The properties of $\hat{\epsilon}_u$ and $\hat{\epsilon}_t$ are discussed in the proof for Thm. 5.1. TFP-R uses $\hat{\epsilon}_u$ for two purposes: (1) to add to the set \mathcal{T} every function $f \in \hat{B}^+$ with $\hat{E}_S[f] \geq \theta + \hat{\epsilon}_u$ (line 10); and (2) to refine the sets \hat{B}^- and \hat{B}^+ with the goal of obtaining smaller supersets of $B^-(\text{TFP}(\theta, \mathcal{L}))$ and of $B^+(\text{TFP}(\theta, \mathcal{L}))$, respectively. The quantity $\hat{\epsilon}_t$ is instead used only for this second goal, which is achieved by computing the set \mathcal{H} of all functions with sample mean in $[\theta - \hat{\epsilon}_t, \theta + \hat{\epsilon}_u]$, and then updating \hat{B}^- (line 13) to be the union between \mathcal{H} and the negative border of $\mathcal{T} \cup \mathcal{H}$, and \hat{B}^+ (line 15) to be the union between \mathcal{H} and the positive border of \mathcal{T}. The last steps inside the loop update the variables ν^- and ν^+, so that ν^- is
an upper bound to the variance of every function \(f \in B^- (\text{TFP}(\theta, L)) \) with \(\mathbb{E}_\mu [f] \geq \hat{z} - \hat{\varepsilon}_t \) (line 18), where \(\hat{z} \) is the minimum sample mean among the functions in \(\hat{B}^- \), and \(\sigma^+ \) is instead an upper bound to the variance of every function \(f \in B^+ (\text{TFP}(\theta, L)) \) with \(\mathbb{E}_\mu [f] \leq \hat{z} + \hat{\varepsilon}_u \) (line 19), where \(\hat{z} \) is the maximum sample mean among the functions in \(\hat{B}^+ \). The loop keeps iterating until \(\hat{B}^- \) and \(\hat{B}^+ \) do not change (condition on line 20), as assessed by comparing their new values with their previous values, saved in the variables \(\hat{B}^-_{\text{prev}} \) and \(\hat{B}^+_{\text{prev}} \), respectively. Finally the set \(T \) is returned in output.

In the interest of clarity, we gave a conceptually high-level description of TFP-R, but an efficient implementation only requires one exploration of \(L \), i.e., some state can be kept between the different calls to getSupDevBoundVar, saving significant time.

Proof of Thm. 5.1. For ease of notation, let \(B^+ = B^+ (\text{TFP}(\theta, L)) \) and \(B^- = B^- (\text{TFP}(\theta, L)) \). Let \(\varepsilon_u \) be as in Thm. 3.5 for \(\eta = \delta_1 \), \(F = B^- \), the matrix \(\sigma \) chosen as on line 1 of Alg. 3, the parameters \(n \) and \(m \) as passed in input to Alg. 3, and \(\sigma^+ \) being the maximum variance of any function in the interval \([\hat{z} - \varepsilon_u, \hat{\theta}] \). Analogously, let \(\varepsilon_\ell \) be as in Thm. 3.5 for \(\eta = \delta_2 \), \(F = B^+ \), the matrix \(\sigma \) chosen as on line 1 of Alg. 3, the parameters \(n \) and \(m \) as passed in input to Alg. 3, and \(\sigma^+ \) being the maximum variance of any function in the interval \([\hat{\theta}, \hat{z} + \varepsilon_\ell] \). We remind that for ease of presentation we are assuming that the functions in \(F \) have value in \([0, 1]\). Theorem 3.5 and a simple union bound tell us that, with probability at least \(1 - \delta \), it holds \(D(B^-, S) \leq \varepsilon_u \) and \(D(B^+, S) \leq \varepsilon_\ell \). Assume for the rest of the proof that that is the case.

We show inductively that, at the end of every iteration of the loop of TFP-R (lines 7–20 of Alg. 3), it holds that: \(T \subseteq \text{TFP}(\theta, L) \); \(B^- \subseteq \hat{B}^- \); \(B^+ \subseteq \hat{B}^+ \); \(\sigma^- \) is an upper bound to the variance of any function in \(B^- \); and \(\sigma^+ \) is an upper bound to the variance of any function in \(B^+ \), therefore the thesis will hold. Note that, since the projection of \(L \) on the bag \(S \) (i.e., the dataset) is finite, the loop on lines 7–20 of Alg. 3 performs a finite number of iterations, therefore Alg. 3 always terminates.

Consider the first iteration of the loop. At the beginning of the iteration, \(T = \emptyset \subseteq \text{TFP}(\theta, L) \) is trivially true, and naturally \(\sigma^- \) and \(\sigma^+ \) as computed in lines 5 and 6 are an upper bound to the variance of any function in \(B^- \) and of any function in \(B^+ \), respectively. Consider the value \(\hat{\varepsilon}_u \) returned by the call to the function getSupDevBoundVar on line 8 with the parameters shown in the algorithm. As we discussed when we presented MCRapper, the function call computes the \(n \)-MCERA of \(\hat{B}^- \) to then compute \(\hat{\varepsilon}_u \) using (6). It holds \(\hat{R}_m^n (\hat{B}^-_S, \sigma) \geq \hat{R}_m^n (B^-, S, \sigma) \), because the \(n \)-MCERA of a superset of a family is not smaller than the \(n \)-MCERA of the family. Since the value on the r.h.s. of (6) is monotonically increasing with the \(n \)-MCERA and with the upper bound to the variance, then it holds that \(\hat{\varepsilon}_u \geq \varepsilon \). Since we assumed that \(D(B^-, S) \leq \varepsilon_u \), it holds \(\hat{\varepsilon}_u \geq \varepsilon_u \geq D(B^-, S) \). Analogously, we have that \(\hat{\varepsilon}_\ell \geq \varepsilon_\ell \geq D(B^+, S) \).

We now prove that that the properties defined above hold at the end of the first iteration. Since \(\hat{\varepsilon}_u, D(B^-, S) \), as discussed in the description of the algorithm all \(f \in L \) with \(\hat{S}_S [f] \geq \hat{\theta} + \hat{\varepsilon}_u \) belong to \(\text{TFP}(\theta, L) \). We just showed that \(T \subseteq \text{TFP}(\theta, L) \).

Consider now a function \(f \in B^- (\text{TFP}(\theta, L)) \). Since \(T \subseteq \text{TFP}(\theta, L) \), \(f \) cannot be in \(T \), therefore \(\hat{S}_S [f] < \hat{\theta} + \hat{\varepsilon}_u \). Moreover, either \(\hat{S}_S [f] \geq \hat{\theta} - \hat{\varepsilon}_t \), therefore \(f \in \mathcal{H} \), or \(\hat{S}_S [f] < \hat{\theta} - \hat{\varepsilon}_t \). If the latter holds, consider any parent \(f' \) of \(f \) in the poset. By definition \(f' \in B^+(\text{TFP}(\theta, L)) \), therefore either \(\hat{S}_S [f'] \geq \hat{\theta} + \hat{\varepsilon}_u \), that is \(f' \in T \), or \(\hat{S}_S [f'] < \hat{\theta} + \hat{\varepsilon}_u \) and \(\hat{S}_S [f'] \geq \hat{\theta} - \hat{\varepsilon}_t \), since \(\hat{\varepsilon}_t \geq D(B^+, S) \), therefore \(f' \in \mathcal{H} \). Combining the two cases, \(f' \in T \cup \mathcal{H} \), therefore \(f \in B^- (T \cup \mathcal{H}) \). We just showed that \(B^- \subseteq \hat{B}^- \).

Consider now a function \(f \in B^+(\text{TFP}(\theta, L)) \). Since \(\hat{\varepsilon}_t \geq D(B^+, S) \) and \(f \in \text{TFP}(\theta, L) \), it holds \(\hat{S}_S [f] \geq \hat{\theta} - \hat{\varepsilon}_t \). Moreover, either \(\hat{S}_S [f] \leq \hat{\theta} + \hat{\varepsilon}_u \), that is \(f \in \mathcal{H} \), or \(\hat{S}_S [f] > \hat{\theta} + \hat{\varepsilon}_u \). If the latter holds, then \(f \in T \), and since \(T \subseteq \text{TFP}(\theta, L) \), it holds \(f \in B^+(T) \). We just showed that \(B^+ \subseteq \hat{B}^+ \).
We now show that \(\hat{\nu}^- \) as computed on line 18 is not smaller than \(\max_{f \in B^-} \text{Var}_\mu[f] \). Since \(B^- \subseteq \hat{B}^- \), and no \(f \in B^- \) can have \(\mathbb{E}_\mu[f] > \hat{\mathbb{E}}_S[f] - \hat{\epsilon}_\nu \), then it follows that \(\hat{z} - \hat{\epsilon}_\nu \), where \(\hat{z} \) is computed as in line 16, is not larger than \(\mathbb{E}_\mu[f] \) for any \(f \in B^- \). The new value for \(\hat{\nu}^- \) is therefore an upper bound to \(\text{Var}_\mu[f] \) for any \(f \in B^- \). Analogously, the new value for \(\hat{\nu}^+ \) computed on line 19 is an upper bound to \(\text{Var}_\mu[f] \) for any \(f \in B^+ \).

So we are done with the proof of the base case: at the end of the first iteration of the loop, it holds that: \(T \subseteq \text{TFP}(\theta, L) \); \(B^- \subseteq \hat{B}^- \); \(B^+ \subseteq \hat{B}^+ \); \(\hat{\nu}^- \) is an upper bound to the variance of any function in \(B^- \); and \(\hat{\nu}^+ \) is an upper bound to the variance of any function in \(B^+ \).

Assume now that that: \(T \subseteq \text{TFP}(\theta, L) \), \(B^- \subseteq \hat{B}^- \), \(B^+ \subseteq \hat{B}^+ \); \(\hat{\nu}^- \) is an upper bound to the variance of any function in \(B^- \), and \(\hat{\nu}^+ \) is an upper bound to the variance of any function in \(B^+ \) at the end of all iterations from 1 to \(i \). Following the same reasoning as for the base case, it holds that these facts are true also at the end of iteration \(i + 1 \) and our proof is complete. □

Precision and recall: getting the best of both worlds. As presented in the previous section, the output of TFP-R has (probabilistically) no false positives, i.e., it will not include patterns that are not TFPs, but it may have false negatives, i.e., it may not return all TFPs. In other words, it has perfect precision, but imperfect recall. It is possible to modify TFP-R to also return, in addition to \(T \), a collection \(T' \) of patterns that is (probabilistically) a superset of \(\text{TFP}(\theta, L) \), thus \(T' \) may also contain some false positives. The set \(T' \) offers perfect recall but imperfect precision. The only change necessary w.r.t. TFP-R is to return, in addition to \(T \), the set \(T' \equiv \{ f \in L : \hat{\mathbb{E}}_S[f] \geq \theta - \hat{\epsilon}_\ell \} \). The guarantees on \(T \) from Thm. 5.1 still hold, so we obtain the following result.

Theorem 5.2. Given \(L, S, \theta \in [0, 1], \delta_1, \delta_2 \in (0, 1) \), and a number \(n \geq 1 \) of Monte-Carlo trials, TFP-R with the above modification returns two sets \(T' \) and \(T \) such that

\[
\Pr_{S, \sigma}\left(T \subseteq \text{TFP}(\theta, L) \subseteq T' \right) \geq 1 - (\delta_1 + \delta_2)
\]

The proof follows from the properties of \(\hat{\epsilon}_\ell \) that we discussed in the proof of Thm. 5.1.

This variant of TFP-R offers the best of both worlds in terms of precision and recall: \(T' \) has perfect recall, while \(T \) has perfect precision. The set \(T' \setminus T \) is the collection of patterns for which we cannot reliably state whether they belong or not to \(\text{TFP}(\theta, L) \).

This result is made possible by the “decomposition” of the task of finding the TFPs into the two tasks of identifying the positive and negative border. The uniform convergence results involving the \(n \)-MCERA then allow us to obtain the two distinct upper bound bounds \(\hat{\epsilon}_\ell \) and \(\hat{\epsilon}_\nu \) to the SDs of each borders, and use these quantities to compute collections of patterns with the desired guarantees in terms of precision and recall.

6 EXPERIMENTS

In this section we present the results of our experimental evaluation for MCRapper. We compare MCRapper to Amira [26], an algorithm that bounds the Supremum Deviation by computing a deterministic upper bound to the ERA with one pass on the random sample. The goal of our experimental evaluation is to compare MCRapper to Amira in terms of the upper bound to the SD they compute. We also assess the impact of the difference in the SD bound provided by MCRapper and Amira for the application of mining true frequent patterns, by comparing our algorithm TFP-R with TFP-A, a simplified variant of TFP-R that uses Amira to compute a bound \(\epsilon \) on the SD for all functions in \(L \), and returns as candidate true frequent patterns the set \(G(\theta + \epsilon, S) \). It is easy to prove that the output of TFP-A is a subset of true frequent patterns with probability \(\geq 1 - \delta \). We also evaluate the running time of MCRapper and of its variant MCRapper-H.
Datasets and implementation. We implemented MCRapper and MCRapper-H in C, by modifying TopKWY [24]. Our implementations are available at https://github.com/VandinLab/MCRapper. The implementation of AMIRA [26] has been provided by the authors. We test both methods on 18 datasets (see Table 1 for their statistics), widely used for the benchmark of frequent itemset mining algorithms. To compare MCRapper to AMIRA in terms of the upper bound to the SD, we draw, from every dataset, random samples of increasing size \(m \); we considered 6 values equally spaced in the logarithmic space in the interval \([10^3, 10^6]\). We only consider values of \(m \) smaller than the dataset size \(|D|\). For both algorithms we fix \(\delta = 0.1 \). For MCRapper we use \(n \in \{1, 10, 100\} \). Additional details on reproducing our experiments are available in App. A.

Table 1. Datasets statistics. For each dataset, we report the number \(|D|\) of transactions; the number \(|I|\) of items; the average transaction length.

| dataset | \(|D|\) | \(|I|\) | avg. trans. len. |
|---------------|-------|-------|-----------------|
| svmguide3 | 1,243 | 44 | 21.9 |
| chess | 3,196 | 75 | 37 |
| breast cancer | 7,325 | 396 | 11.7 |
| mushroom | 8,124 | 117 | 22 |
| phishing | 11,055| 137 | 30 |
| a9a | 32,561| 245 | 13.9 |
| pumsb-star | 49,046| 7,117 | 50.9 |
| bms-web1 | 58,136| 60,878| 3.51 |
| connect | 67,557| 129 | 43.5 |
| bms-web2 | 77,158| 330,285| 5.6 |
| retail | 87,979| 16,470| 10.8 |
| icjcn1 | 91,701| 43 | 13 |
| T10I4D100K | 100,000| 1,000 | 10 |
| T40I10D100K | 100,000| 1,000 | 40 |
| accidents | 340,183| 468 | 34.9 |
| bms-pos | 515,420| 1,657 | 6.9 |
| covtype | 581,012| 108 | 12.9 |
| susy | 5,000,000| 190 | 19 |

To compare TFP-R to TFP-A, we analyze synthetic datasets of size \(m = 10^4 \) obtained by randomly sampling transactions from each dataset. We use \(n = 10 \) for TFP-R, and \(\delta = 0.1 \). We report the results for \(\theta = 0.1 \); other values of \(\theta \) (we considered \(\theta \in \{0.05, 0.1, 0.25, 0.5\} \)) produced similar results, as we show in Appendix B.

For all experiments and parameters combinations we perform 10 runs of TFP-R over the same random sample. For both algorithms, when the number of results exceeds \(10^8 \) patterns, we report at most \(10^8 \) closed patterns, a lossless representation of the full set. In all the figures we report the averages and average ± standard deviations of these runs.

6.1 Bounds on the SD
Figure 2(a)-(c) show the ratio between the upper bound on the SD obtained by MCRAPPER and the one obtained by AMIRA for different values of \(n \). The bound provided by MCRAPPER is always better (i.e., lower) than the bound provided by AMIRA (e.g., for \(n = 100 \) the bound from MCRAPPER is always at least 34% smaller than the bound from AMIRA). For \(n = 1 \) one can see that the novel
improved bound from Thm. 4.7 should really be preferred over the “standard” one from Thm. 3.1 (shown with dashed lines). Similar results hold for all other datasets. These results highlight the effectiveness of MCRAPPER in providing a much tighter bound to the SD than currently available approaches. In Fig. 2d, we show the composition of the SD bound into its components: the bottom (red) part is twice the n-MCERA, then comes (in green, second from the bottom) the contribution of the tail bound from the previous quantity to twice the ERA, then, in orange and third from the bottom, is the part that can be attributed to the tail bound to twice the Rademacher average, and finally the tail bound from this quantity to the upper bound to the SD. It is evident from this figure that the second component ($2 \cdot n$-MCERA to 2-ERA) is the only one which depends on the number n of MC-trials, and as its contribution decreases root-hyperbolically with increasing n, it quickly becomes essentially insignificant.

![Fig. 2. (a)-(c): Ratios of the SD bounds obtained by MCRapper ($n \in \{1, 10, 10^2\}$) to AMIRA SD bounds, for the entire F, on four of the datasets we analyzed. For $n = 1$, dashed lines use the tail bound from Thm. 3.1 instead of the one from Thm. 4.7. (d): Values of $2 \cdot n$-MCERA, and upper bounds to 2-ERA, 2-RC, and SD, for a random sample of the dataset accidents of size $m = 2.56 \cdot 10^5$, as functions of n.](image)

![Fig. 3. (a) Bounds on the Supremum Deviation obtained by TFP-R and TFP-A for $\theta = 0.1$. (b) Number of reported patterns (left y-axis) and ratios (right y-axis) by TFP-R and TFP-A.](image)

6.2 Mining True Frequent Patterns

We compare the SD bound computed by MCRAPPER with the one computed by TFP-A. The results are shown in Fig. 3a. Similarly to what we observed in Sect. 6.1, MCRAPPER provides much tighter...
bounds being, in most cases, less than 50% of the bound reported by Amira. We then assessed the impact of such difference in the mining of TFPs, by comparing the number of patterns reported by TFP-R and by TFP-A. Since for both algorithms the output is a subset of the true frequent patterns with probability $\geq 1 - \delta$, reporting a higher number of patterns corresponds to identifying more true frequent patterns, i.e., to higher power. Figure 3b shows the number of patterns reported by TFP-R and by TFP-A (left y-axis) and the ratio between such quantities (right y-axis). The SD bound from MCRapper is always lower than the SD bound from Amira, so TFP-R always reports at least as many patterns as TFP-A, and it reports at least twice as many patterns as TFP-A for 10 out of 18 datasets. These results show that the SD bound computed by TFP-R provides a great improvement in terms of power for mining TFPs w.r.t. current state-of-the-art methods for SD bound computation.

6.3 Running time

For these experiments we take a random sample of size 10^4 of the 6 most demanding datasets (accidents, chess, connect, phishing, pumsb-star, susy; for the other datasets MCRapper takes much less time than the ones shown) and use the hybrid approach MCRapper-H (Sect. 4.2.1) with different values of β (and $n = 1$, which gives a good trade-off between the bounds and the running time, $\gamma = 0.01$, $\delta = 0.1$). We naïvely upper bound $|K(S, \beta)|$ with $\sum_{s_i \in S} 2^{|s_i|}$, where $|s_i|$ is the length of the transaction s_i, a very loose bound that could be improved using more information from S. Figures 4a and 4b show the running time of MCRapper and Amira vs. the obtained upper bound on the SD (different colors correspond to different values of β). With Amira one can quickly obtain a fairly loose bound on the SD, by using MCRapper and MCRapper-H one can trade-off the running time for smaller bounds on the SD.

7 CONCLUSION

We present MCRapper, an algorithm for computing a bound to the supremum deviation of the sample means from their expectations for families of functions with poset structure, such as those that arise in pattern mining tasks. At the core of MCRapper there is a novel efficient approach
to compute the n-sample Monte-Carlo Empirical Rademacher Average based on fast search space exploration and pruning techniques. Thus, we are using pattern mining techniques to solve a problem (the computation of the n-MCERA) that is not a pattern mining problem, but the solution to this problem allows us to solve pattern mining problems (e.g., the True-Frequent-Patterns problem). MCRapper returns a much better (i.e., smaller) bound to the supremum deviation than existing techniques. We use MCRapper to extract true frequent patterns and show that it finds many more patterns than the state of the art.

ACKNOWLEDGMENTS

Part of this work was conducted while L.P. was visiting the Department of Computer Science of Brown University, supported by a “Fondazione Ing. Aldo Gini” fellowship. Part of this work is supported by the National Science Foundation awards RI-1813444 and IIS-2006765, by the MIUR of Italy under PRIN Project n. 20174LF3T8 AHeAD (Efficient Algorithms for HArlressing Networked Data), and by the University of Padova grant STARS 2018.

REFERENCES

We now describe how to reproduce our experimental results. Code and data are available at https://github.com/VandinLab/MCRapper.

The code of MCRapper, TFP-R, and AMIRA are in the sub-folders mcrapper/ and amira/. To compile with recent GCC or Clang, use the make command inside each sub-folder.

A APPENDIX: REPRODUCIBILITY

We now describe how to reproduce our experimental results. Code and data are available at https://github.com/VandinLab/MCRapper.

The code of MCRapper, TFP-R, and AMIRA are in the sub-folders mcrapper/ and amira/. To compile with recent GCC or Clang, use the make command inside each sub-folder.
The convenient scripts `run_amira.py` and `run_mcrapper.py` can be used to run the experiments (i.e., run AMIRA, MCRAPPER, and TFP-R). They accept many input parameters (described using the flag `-h`). You need to specify a dataset and the size of a random sample to create using the flags `-db` and `-sz`. E.g., to process a random sample of 10^3 transactions from the dataset `mushroom` with $n = 100$, run

```
run_mcrapper.py -db mushroom -sz 1000 -j 100
```

and it automatically executes both AMIRA and MCRAPPER. The command line to process with TFP-R a sample of 10^4 transactions from the dataset `retail` with $n = 30$ and $\theta = 0.05$ is

```
run_mcrapper.py -db retail -sz 10000 -j 30 -tfp 0.05
```

The `run_all_datasets.py` script runs all the instances of MCRAPPER and AMIRA in parallel, and can be used to reproduce all the experiments described in Sect. 6. The `run_tfp_all_datasets.py` script reproduces the experiments for TFP-R and TFP-A.

All the results are stored in the files `results_mcrapper.csv` and `results_tfp_mcrapper.csv`.

B ADDITIONAL RESULTS

![Figure 5](image_url)

Fig. 5. (a) Bounds on the Supremum Deviation obtained by TFP-R and TFP-A for $\theta = 0.05$. (b) Number of reported patterns (left y-axis) and ratios (right y-axis) by TFP-R and TFP-A.
Fig. 6. (a) Bounds on the Supremum Deviation obtained by TFP-R and TFP-A for $\theta = 0.25$. (b) Number of reported patterns (left y-axis) and ratios (right y-axis) by TFP-R and TFP-A.

Fig. 7. (a) Bounds on the Supremum Deviation obtained by TFP-R and TFP-A for $\theta = 0.5$. (b) Number of reported patterns (left y-axis) and ratios (right y-axis) by TFP-R and TFP-A.