
A Scalable Parallel Algorithm for Balanced Sampling (Supplement)

Alexander Lee,*1 Stefan Walzer-Goldfeld,*1 Shukry Zablah,2 Matteo Riondato1

1 Box 2232, Dept. of Computer Science, Amherst College, Amherst, MA 01002, USA
2 Pallet Labs Inc.

{awlee22, swalzergoldfeld23, mriondato}@amherst.edu, shukry@pallet.xyz

Related Work
Deville and Tillé (2004) present the cube method, an effi-
cient balanced sampling method. They use a balancing mar-
tingale to perform a random walk on a hypercube to se-
lect approximately balanced samples with specific inclusion
probabilities (see Algorithms below for a complete descrip-
tion). However, the runtime of the algorithm depends on the
square of the population size N , which results in very slow
runs for large population sizes.

Chauvet and Tillé (2006) provide an improved algorithm
for the cube method that reduces memory usage significantly
and has time complexity linear in the population size N .
This algorithm only performs matrix operations on a small
submatrix instead of the entire population, providing signif-
icant improvement. However, this algorithm is still too slow
for sampling from very large populations, which are com-
mon in modern data analytics.

Chauvet (2009) proposes an extension of the cube method
for stratified populations. It provides a sampling design such
that the sample is balanced across all auxiliary variables
while maintaining a fixed allocation within each stratum.
This is achieved by performing the flight phase of the cube
method on each individual stratum and pooling the results
(see Alg. 4 below). This stratified method has a slightly
worse balancing quality than the cube methods presented
by Deville and Tillé (2004) and Chauvet and Tillé (2006),
though it still generates an approximately balanced sample.

There also exist multiple implementations of the
cube method. Tillé and Matei (2016) implemented
the algorithm by Chauvet and Tillé (2006) in the R
cubesampling package. Grafström and Lisic (2016) im-
plemented the same method in R with C++ subroutines in
the BalancedSampling package. Both of these meth-
ods are implemented sequentially, and as a result, perform
poorly on datasets with large population sizes.

Description of Algorithms
The Cube Method
We now describe the cube method by Deville and Tillé
(2004) in detail, as its two phases, the flight and the landing,

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

are used also in our algorithm. For ease of presentation, we
discuss the flight phase as in the original cube method rather
than the more efficient one by Chauvet and Tillé (2006), but
our implementation uses the latter.

The flight phase The objective of the flight phase is to
randomly select a vertex of the hypercube C that intersects
with K = C ∩ Q by following a balancing martingale. A
balancing martingale is a discrete time stochastic process
ϕ(t)

.
= ⟨ϕ1(t), . . . , ϕN (t)⟩ in RN for an inclusion proba-

bility vector π and auxiliary variables A = ⟨a1, . . . ,aN ⟩
if

1. ϕ(0) = π;
2. E[ϕ(t) | ϕ(t− 1), . . . ,ϕ(0)] = ϕ(t− 1), t = 1, 2, . . .;

3. ϕ(t) ∈ K = C ∩ Q = [0, 1]
N ∩ (π + ker(W)),

t = 1, 2, . . ., where W
.
= ⟨a1/π1, . . . ,aN/πN ⟩ with

dimensions n×N .

Deville and Tillé (2004) propose an implementation of a bal-
ancing martingale for the flight phase. Pseudocode for it is
in Algorithm 1. The algorithm initializes the balancing mar-
tingale with ϕ = π, as required by the first property above.
Then it chooses an arbitrary non-zero vector u ∈ ker(W)
such that uk(t) = 0 if ϕk(t) ∈ {0, 1}. The balancing mar-
tingale will move along the line corresponding to this vector
at the next time steps, i.e., ϕ(t+ 1) = ϕ(t) + λu, for some
step size λ. Line 5 then computes two candidate step sizes
λ∗
1 and λ∗

2 by taking the maximum values of step sizes along
u that still ensure ϕ(t + 1) is within [0, 1]

N . We then com-
pute (line 6) the probability q that ϕ(t + 1) = ϕ(t) + λ∗

1u,
and we use it to update ϕ on line 7. The probability q is
constructed to ensure that, at each step t, point 2 of the bal-
ancing martingale definition holds. With respect to its previ-
ous value, ϕ has at least one additional entry with value in
{0, 1}. A new vector u is chosen, and, provided it exists, the
algorithm iterates. The loop terminates when it is impossible
to update u, at which point ϕ is returned.

The landing phase If the vector ϕ returned by the flight
phase does not belong to {0, 1}N (i.e., it is not a vertex of
the hypercube C), then it does not actually represent a valid
sample, despite satisfying the balancing equations. Thus we
have to solve the rounding problem and find a nearby vertex
of the hypercube that approximately satisfies the balancing

Algorithm 1: Flight Phase
Input : Auxiliary variables A = ⟨a1, . . . ,aN ⟩;

inclusion probabilities π.
Output: Vector ϕ ∈ [0, 1]

N

1 W← A/π // Entry-wise division
2 ϕ← π
3 u← arbitrary non-zero vector in ker(W) s.t. uk = 0

if ϕk ∈ {0, 1}
4 while u exists do
5 λ∗

1, λ
∗
2 ← max. λ1, λ2 s.t. 0 ≤ ϕ+ λ1u ≤ 1, and

0 ≤ ϕ− λ2u ≤ 1
6 q ← λ∗

2/(λ
∗
1 + λ∗

2)

7 ϕ←
{
ϕ+ λ∗

1u with prob. q
ϕ− λ∗

2u with prob. 1− q

8 u← arbitrary non-zero vector in ker(W) s.t.
uk = 0 if ϕk ∈ {0, 1}

9 return ϕ

equations. The goal of the landing phase is to find such ver-
tex.

Deville and Tillé (2004) propose two possible algorithms
for the landing phase: landing by suppression of variables
and landing by linear programming. Here, we only describe
the former because it scales better. Pseudocode for the land-
ing phase by suppression of variables is in Alg. 2. Let ϕ
be the vector returned by the flight phase. We refer to the
indices of ϕ corresponding to nonintegral components (i.e.,
the set of indices k, 1 ≤ k ≤ N , such that 0 < ϕk < 1) as
the active indices of ϕ. The elements in ϕ that correspond
to the active indices of ϕ are the active units of ϕ. Similarly,
we can also refer to the elements in A that correspond to
the active indices of ϕ as the active units of A. The land-
ing phase by suppression of variables repeatedly executes
the flight phase with the active units of A, but dropping one
auxiliary variable per repetition, and the active units of ϕ.
The repeated flight phases accumulate the sample in ϕ until
ϕ ∈ {0, 1}N . The resulting ϕ is used as the sample, which
is not perfectly balanced because it only satisfies a subset of
the balancing equations. We only use the active units of ϕ
for each execution of the flight phase to prevent a division
by zero error when computing W← A/ϕ.

Algorithm 3 shows how the flight and landing phases
come together to create the whole cube method.

Cube Method for Stratified Populations
We now describe Chauvet (2009)’s variant of the cube
method for stratified populations, whose pseudocode is in
Alg. 4.

1. (Lines 1–5) Initialize ϕ with π. Let Uha denote the active
units in stratum Uh, h = 1, . . . ,H . For each stratum Uh,
h = 1, . . . ,H , compute a flight phase with A[:, Uha] and
π[Uha], where A[:, Uha] and π[Uha] are respectively the
active units of A and π for Uh. The results are accumu-
lated into ϕ.

Algorithm 2: Landing Phase (by Suppression of
Variables)

Input : Auxiliary variables A = ⟨a1, . . . ,aN ⟩;
vector ϕ.

Output: Sample ϕ.
1 n← RowCount(A)

2 while ϕ /∈ {0, 1}N and n > 0 do
3 actIdxs← indices in ϕ such that 0 < ϕk < 1
4 ϕ[actIdxs]← FlightPhase(A[: n,actIdxs],

ϕ[actIdxs])
5 n← n− 1

6 return ϕ

Algorithm 3: Cube Method
Input : Auxiliary variables A = ⟨a1, . . . ,aN ⟩;

inclusion probabilities π.
Output: Sample ϕ.

1 ϕ← π
2 actIdxs← indices in π such that 0 < πk < 1
3 ϕ′ ← FlightPhase(A[:,actIdxs], π[actIdxs])
4 ϕ[actIdxs]← LandingPhase(A[:,actIdxs], ϕ′)
5 return ϕ

2. (Lines 6–8) Perform a flight phase with the active units
of ϕ and A′ = ⟨a′1, . . . ,a′N ⟩, where, for k = 1, . . . , N ,

a′k
.
= ⟨ϕk1[uk ∈ U1], . . . , ϕk1[uk ∈ UH],a⊺kϕk/πk⟩⊺,

where 1[·] is the indicator function taking value 1 if the
argument is true, and 0 otherwise. The H new constraints
ϕk1[uk ∈ U1], . . . , ϕk1[uk ∈ UH] are used to restrict
the support S to fixed-size samples in each stratum. This
step produces modified inclusion probabilities ϕ′.

3. (Lines 9–10) Perform a landing phase with ϕ′ and the
active units of A′. The sample produced by the landing
phase is then used to replace the active units of ϕ, which
is then returned.

Parallel Algorithm for Balanced Sampling
We now describe more in depth our novel parallel algorithm
for balanced sampling, which follows closely the stratified
cube method. The pseudocode is reported in Alg. 5.

1. (Lines 1–6) Execute in parallel step 1 of the stratified
cube method with fake strata U ′

1, . . . , U
′
p, where p is the

number of available processors.
2. (Lines 7–9) Execute step 2 of the stratified cube method

with auxiliary variables a′k = ⟨a⊺kϕk/πk⟩⊺ (instead of
a′k = ⟨ϕk1[uk ∈ U1], . . . , ϕk1[uk ∈ UH],a⊺kϕk/πk⟩⊺),
k = 1, . . . , N . This step is performed using only the orig-
inal auxiliary variables instead of prepending the fixed
size sampling constraints because fixed sized sampling is
only necessary for stratification: since the strata are fake,
we do not care about how many units are sampled per
stratum.

Algorithm 4: Stratified Cube Method
Input : Auxiliary variables A = ⟨a1, . . . ,aN ⟩;

inclusion probabilities π;
strata U1, . . . , UH .

Output: Sample ϕ.
1 ϕ← π
2 actIdxs← indices in π such that 0 < πk < 1
3 for h← 1 to H do
4 Uha ← Uh[actIdxs]
5 ϕ[Uha]← FlightPhase(A[:, Uha], π[Uha])

6 actIdxs← indices in ϕ such that 0 < ϕk < 1
7 A′ ← ⟨a′1, . . . ,a′N ⟩ where, for k = 1, . . . , N , a′k

.
=

⟨ϕk1[uk ∈ U1], . . . , ϕk1[uk ∈ UH],a⊺kϕk/πk⟩⊺
8 ϕ′ ← FlightPhase(A′[:,actIdxs], ϕ[actIdxs])
9 ϕ[actIdxs]← LandingPhase(A′[:,actIdxs], ϕ′)

10 return ϕ

3. (Lines 10–11) Execute step 3 of the stratified cube
method as is.

Algorithm 5: Parallel Cube Method
Input : Number of processors p;

auxiliary variables A = ⟨a1, . . . ,aN ⟩;
inclusion probabilities π.

Output: Sample ϕ.
1 U ′

1, . . . , U
′
p ← CreateFakeStrata(A)

2 ϕ← π
3 actIdxs← indices in π such that 0 < πk < 1
4 for f ← 1 to p do in parallel
5 U ′

fa ← U ′
f [actIdxs]

6 ϕ[U ′
fa]← FlightPhase(A[:, U ′

fa], π[U
′
fa])

7 actIdxs← indices in ϕ such that 0 < ϕk < 1
8 A′ ← ⟨a′1, . . .a′N ⟩ where, for k = 1, . . . , N ,

a′k = ⟨a⊺kϕk/πk⟩⊺
9 ϕ′ ← FlightPhase(A′[:,actIdxs], ϕ[actIdxs])

10 ϕ[actIdxs]← LandingPhase(A′[:,actIdxs], ϕ′)
11 return ϕ

Additional Experiments
Figure 1 shows the runtimes for additional population sizes
that were not included in the main document.

Fig. 2 describes the absolute relative deviation of the
Horvitz-Thompson estimate of the population total for each
auxiliary variable. The vector of absolute relative deviations
is defined as

100
|T̃−T|

T
, (1)

where the division is entry-wise.
Each group of box-and-whiskers plots represents the ab-

solute relative deviation for a specific auxiliary variable. The
middle of each box-and-whiskers plot is the median absolute
relative deviation. The top and bottom of the box represent

Figure 1: Parallel algorithm runtimes for different N and p.

Figure 2: Absolute relative deviation by auxiliary variable.

the first and third quartiles, respectively. The whiskers are
1.5 times the interquartile range (Q1 −Q3).

Fig. 2 shows that our parallel algorithm creates samples
that have very small absolute deviations for the population
totals and similar to that of existing sequential methods for
balanced sampling, thus confirming the correctness of our
algorithm.

Acknowledgements
This work is funded, in part, by NSF award IIS-2006765.

References
Chauvet, G. 2009. Stratified balanced sampling. Survey
Methodology, 35(1): 115–119.
Chauvet, G.; and Tillé, Y. 2006. A fast algorithm for bal-
anced sampling. Computational Statistics, 21(1): 53–62.
Deville, J.-C.; and Tillé, Y. 2004. Efficient balanced sam-
pling: the cube method. Biometrika, 91(4): 893–912.
Grafström, A.; and Lisic, J. 2016. BalancedSampling: Bal-
anced and spatially balanced sampling.
Tillé, Y.; and Matei, A. 2016. sampling: Survey Sampling.

