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Οὐ πάνυ ἡμῖν οὕτω φροντιστέον τί ἐροῦσιν οἱ πολλοὶ ἡμᾶς,

ἀλλ᾿ ὅτι ὁ ἐπαΐων περὶ τῶν δικαίων καὶ ἀδίκων. [Σωκράτης,

Πλάτωνος ῾῾Κρίτων᾿᾿]

We should not care so much about what the many say about us,
but about what says whoever is expert on what is right and wrong.
[Socrates in Plato’s “Crito”]

ABSTRACT
Crowdsourcing is a computational paradigm whose distinctive fea-
ture is the involvement of human workers in key steps of the com-
putation. It is successfully used to address problems that would be
hard or impossible to solve for machines. On the other hand, as
we also highlight in this work, the exclusive use of nonexpert in-
dividuals may prove ineffective in some cases, especially when the
task at hand or the need for accurate solutions demand some degree
of specialization to avoid excessive uncertainty and inconsistency
in the answers. In this work, we address this limitation, propos-
ing an approach that combines the wisdom of the crowd with the
educated opinion of experts. We present a computational model
for crowdsourcing that envisions two classes of workers with dif-
ferent expertise levels. One of its distinctive features is the adop-
tion of the threshold error model, whose roots are in psychometrics
and which we extend from previous theoreticalwork. Our computa-
tional model allows evaluating the performance of crowdsourcing
algorithms along different axes, including monetary cost and time.
We use our model to develop and analyze an algorithm for approx-
imating the “best,” in a broad sense, of a set of elements. The algo-
rithm uses naïve and expert workers to find an element that is very
close (a constant-factor approximation) to the best. We prove upper
and lower bounds on the number of comparisons needed to solve
this problem, showing that our algorithm uses expert and naïve
workers almost optimally. Finally, we evaluate our algorithm on
real and artificial datasets using the CrowdFlower crowdsourcing
platform, showing that our approach is also effective in practice.

1. INTRODUCTION
Crowdsourcing is a computational paradigm that enables out-

sourcing pieces of the computation to humans who perform them
under monetary compensation. The main rationale for the involve-
ment of humans is the existence of tasks that are easy to perform
for a person but very difficult or impossible to accomplish for a

machine. It has applications in machine learning, visualization,
recommendation systems, computational photography, and data an-
alytics. Examples include identifying the best picture representing
a certain object or location, editing a block of text to improve clar-
ity or find style errors, or suggesting the best value or price for
a product. As these examples highlight, one of the main reasons
for bringing humans into the computational loop is that the task is
under-specified or cannot be specified sufficiently in details for a
machine to perform it, whereas humans can use intuition and their
background knowledge to understand what is requested from them.

Despite the fact that humans can carry out some operations bet-
ter or more easily than machines, they do not always perform them
correctly. Indeed, it has been observed that the output of crowd-
sourcing systems can be extremely noisy [10, 25]. There are two
main sources of error. The first is incompleteness of information:
tasks may be underspecified in many respects, so that individual
factors come into play when humans perform them. For example,
when asked to choose the picture best representing the Colosseum,
people will not in general agree on the definition of best. Simi-
larly, people will not converge on a single answer when requested
to value items (e.g., real estates or cars) on the basis of limited in-
formation, such as one or more pictures and a summary of the main
characteristics of the items they are requested to value. In this case,
although a ground truth may exist (e.g., cars come with factory
prices), humans may err because they possess only partial informa-
tion and/or their judgment may be clouded by personal biases. The
second source of error, or actually set of sources, includes mistakes
due to input errors, misunderstanding of the requirements, and ma-
licious behavior (crowdsourcing spamming). As an example of the
first two, a human worker may provide an answer that is not the
one she actually intended to give, or erroneously select the mini-
mum of two elements instead of the maximum. Spammers instead
are workers with disruptive behavior: they either try to perform as
many tasks as possible by selecting answers randomly to maximize
their personal utilities, or they select the wrong answer on purpose.

To motivate the topic of this work, assume first that we ask you
which of the two pictures of Figure 1(a) has fewer dots; which one
would you select? (Try, if you want, before proceeding!) The cor-
rect answer is the first one (180 vs. 200). Most humans can answer
this question by using abilities that are either hard-wired or natu-
rally learnt in the course of time. Even though one may err, chances
are that she will respond correctly. Thus, if we ask several individ-



uals the same question, we expect that the majority will answer
correctly, and the higher the number of people we ask, the higher
our confindence that the answer is correct. In cases like this we
can successfully apply the paradigm of the wisdom of crowds [19].
Indeed, it is for tasks like this that crowdsourcing platforms offer
the possibility to ask the same question to several human workers.

Consider now Figure 1(b) and the question “Which car has a
higher price?” (Try to guess again!), and similarly for Figure 1(c).
In both cases the correct answer is the second car. Yet, unless one
is an expert on car pricing or has access to accurate information
about the cars, she probably cannot figure out why the Mercedes
($114K) is more expensive than the BMW ($100K), yet cheaper
than the Audi ($120K)1. In this case the wisdom of crowds will
not work: it is hard to guess the correct answer when the price dif-
ference is small, unless one is a real expert on U.S. car prices or
is able to retrieve accurate information about the prices. For this

(a) Task: select the picture with fewer dots.

(b) Task: select the most expensive car.

(c) Task: select the most expensive car.

Figure 1: Examples of the questions that we asked.

reason, crowdsourcing platforms have started introducing the con-
cept of experts. Amazon mechanical Turk now has masters and
CrowdFlower allows to employ skilled workers. Although the con-

1Prices are from August 2013.

cept of an expert is broad, there are are three characteristics that
expert workers possess: (1) they obtain training or pass tests that
certify that they produce higher-quality results for specific applica-
tion domains with respect to regular workers; (2) they are a much
scarcer resource than regular workers; (3) they offer their services
at a much higher price. We call nonexpert workers naïve.

The design and analysis of algorithms that employ human work-
ers on crowdsourcing platforms require computational and cost mod-
els that are flexible to allow performance analysis and that are re-
alistic enough to reflect the actual runtime and costs of the algo-
rithms. In this respect, two crucial aspects make crowdsourcing dif-
ferent from most other computational paradigms: human error and
monetary cost. The computational and cost models must allow the
expression and analysis of these aspects in a realistic way. In addi-
tion, as already mentioned, the recent trend in crowdsourcing plat-
forms to organize the available workforce into different classes with
different skills demands a suitable modeling of the expert workers,
who allow to achieve higher quality results that cannot be attained
by naïve workers but that come at a higher cost.

1.1 Contributions and Roadmap
In this paper we attempt to capture important aspects of crowd-

sourcing by presenting computational models and designing algo-
rithms on top of them. We introduce the concept of an expert, who
can add qualitatively more power to computations that we are able
to perform. We make our study concrete by addressing the problem
of finding the maximum among a set of elements. This is a prob-
lem often encountered in practice in crowdsourcing scenarios (e.g.,
ranking of search results, web page relevance evaluation, selection
of the best labeling for a picture). Whereas this problem is simple
enough in the standard computational model, it becomes nontrivial
in more complex scenarios as the one we present here. For these
reasons, it is one of the most studied problems in the context of
crowdsourcing [22, 23] (without considering experts).

To summarize our contributions:
• By performing experiments on the CrowdFlower crowdsourc-

ing platform, we identify key characteristics of workers’ per-
formance in diverse scenarios (Sect. 3.1).
• Building on the findings we present models that can capture

the behavior in the diverse settings (Sect. 3.2).
• We introduce the concept of crowdsourcing experts and we

incorporate them in our model (Sect. 3.3).
• Based on our models we formally define the problem of find-

ing the maximum element. We provide lower bounds on the
number of expert and nonexpert comparisons required to solve
it. We provide an algorithm, which we analyze theoretically
and we show that it is optimal (Sect. 4).
• We perform a series of simulations for evaluating the effi-

ciency of our algorithm in practice complementing our theo-
retical anlysis, and we perform a set of experiments on Crowd-
Flower to show its effectiveness in finding the maximum (Sect. 5).

2. RELATED WORK
Many works in the algorithmic literature dealt with the problem

of sorting or computing the maximum of a set of elements using
comparators some of which may be faulty [17, 24], even without
considering the crowdsourcing settings. Various different models
and solutions were proposed. A number of works considered the
idea that the comparator errs with some probability at each com-
parison, independently from other comparisons [4–6, 9, 11, 12,
23]. They presented algorithms to compute the maximum element,
studying numerous variants of this purely probabilistic error model.



In the simplest variant, each comparator has a fixed probability as-
sociated to it, and this remains constant over all comparisons, in-
dependently of the values of the elements. This is for example the
case for the basic models considered in [6] or [5] (in both works,
more sophisticated models are also considered). An important con-
sequence of this probabilistic modeling of the error is the follow-
ing: If the error probabilities are independent and less than 1/2
then, given two items to compare, independently of their mutual
distance, it is possible to identify the element with higher value
with arbitrarily high probability by performing the same compari-
son multiple times, and taking the element that won the majority of
the comparisons (or an arbitrary element in case of a tie). In our
work, we consider a different situation where such conclusion is
not possible: an expert has more “capabilities” than a naïve worker
and her answers can not be simulated by aggregating the answers
of multiple naïve workers. Another model is presented by Aigner
[1], where at each step of the computation a fraction p of the an-
swers returned so far could be wrong. This setting is in part related
to past work on comparisons with faulty memories [7, 8] and more
in general to computational tasks involving communication across
noisy channels. For a survey of literature on this broader area of
research see for example [16]. Other works considered a threshold
model, where the comparator may err if the elements have values
very close to each other [2]. We extend and adapt some of the re-
sults from these previous contributions to the crowdsourcing model
of computation. None of these consider the main idea of the present
work, i.e., that comparators may belong to different classes with
different error parameters and different costs, and one can not be
used to “simulate” the other.

In the crowdsourcing environment, Marcus et al. [13] looked at
how to select the maximal element and sort a sequence of elements
by splitting the input into nonoverlapping sets with the same size
and sort these sets recursively. No guarantee is given on the running
time and accuracy of the algorithms.

Venetis and Garcia-Molina [22] and Venetis et al. [23] present al-
gorithms for finding the maximum in crowdsourcing environments
based on static and dynamic tournaments. Different error models
taken from the psychometrics literature are considered. The opti-
mal parameters for the algorithms are computed using simulated
annealing, given a specific error model and a budget of computa-
tional resources. There is no discussion about the possibility of
having experts and the tradeoffs between accuracy and costs that
this possibility would allow.

The need for experts is pointed out by Sun et al. [18]: a single
majority vote from all the workers is only accurate for low difficulty
tasks, but it is insufficient as the difficulty of tasks increases.

Karger et al. [11] presented an algorithm for crowdsourcing that
learns the reliability of each worker and assigns tasks to workers
according to their reliability, using this piece of information to min-
imize the number of questions asked to the workers. Venetis and
Garcia-Molina [21] present mechanisms to detect badly perform-
ing workers and to rule them out. In our settings, the classes of the
workers are known in advance, as the experts are hand-picked and
assumed to perform much better than the other workers. In a sense,
our work can be considered complementary to [11].

Mason and Watts [14] investigated the impact of increasing the
financial incentives for workers on the quality of the performed
work. They found out that there is no improvement in quality as
the incentive grows. This implies that one can not just pay some
workers more than others and use them as experts. Instead, in our
model we pay experts more than others for the only reason that they
are experts and are going to perform the work with higher precision.

Mo et al. [15] proposed algorithms to compute the number of

workers whom to ask the same question in order to achieve the best
accuracy with a fixed available budget. The workers all belong to
the same class and correctly or incorrectly perform a task with a
probability depending on the task but not on the workers.

Davidson et al. [5] introduced algorithms inspired by [6] to solve
max, top-k, and group-by queries under a new error model where
the probability of error when comparing two elements depends on
the distance between the elements. The probability of error is the
same for all workers, so there is no concept of experts and nonex-
perts, which is a key contribution of our work.

3. MODELING CROWDSOURCING
In this section we formalize crowdsourcing computation for com-

puting the maximum (or best) from a set of elements. We perform
some crowdsourcing experiments and we use the findings to justify
a class of models that we introduce.
Finding the maximum over a set of elements. Let U be a universe
of elements and let v(·) be a function from U to the reals: v :
U → R. For an element e ∈ U we call v(e) the value of e. The
function v establishes a partial2 order over the elements of U . We
define the distance between two elements u, v ∈ U as d(u, v) =
|v(u)− v(v)|. Given a set L of n elements from U , let VL =
maxe∈L v(e). We denote with ML any of the elements from L
with value VL, so that, v(ML) = VL by definition. We call ML

the maximum element of L. The set L will often be clear from
the context and we will drop it from the notation of ML and only
use M . The problem of interest in this work is the selection of an
element e ∈ Lwhose value v(e) is equal to or closely approximates
VL, as formally defined in Sect. 4.
Human workers and crowdsourcing algorithms. Both the uni-
verse U and the value function v are arbitrary. In particular, v may
be very difficult or time consuming to evaluate or even approximate
for computers but very easy to evaluate or approximate for humans.
In this work we develop a crowdsourcing algorithm to compute an
element from L whose value is close to that of the maximum el-
ement M , using a set of human workers W . We assume that a
worker can only compare two elements at a time (this assumption
is often performed in prior works as it simplifies the formalization
and it can be generalized) and returns the one that she believes has
the maximum value. Following Venetis et al. [23], the algorithms
we consider are organized in logical time steps. In the sth logical
step, they send a batch Bs of pairwise comparisons to the crowd-
sourcing platform, which, after some time, returns the correspond-
ing answers from the human workers. Depending on these answers,
the algorithm selects the next batch Bs+1 of comparisons, and so
on, until the algorithm terminates.3 Depending on the size of W ,
each logical step s in general corresponds to a sequence F(s) of
consecutive physical time steps. In particular, in the generic physi-
cal time step t ∈ F(s), a subset Wt ⊆ W of the workers is active.
Each active worker w ∈ Wt receives a pair (k, j) of distinct4 el-
ements from L × L. Worker w then “computes” a comparison
function mw(k, j), which returns the element from k, j that she
believes has the maximum value. We say that the returned element
wins the comparison.
Remark. Venetis et al. [23] simply call “steps” what we call “logi-
cal steps” here. The reason is that they consider the number of logi-
cal time steps (according to our terminology) a reasonable measure
of the time complexity. See the discussion in Sect. 3.4.
2The order is partial because it is possible to have v(e1) = v(e2) for e1 6= e2.
3One can also envision nonadaptive algorithms.
4By distinct we just mean that a worker does not receive two copies of the same
element, not that d(k, j) 6= 0.



Given the generality of the function v and of the universe U , the
worker w may not be able to compute v exactly, but only to some-
how approximate it. Hence the element returned by the function
mw may not be the one with maximum value. To delve more into
this question, we start by performing a set of crowdsourcing ex-
periments, which allow us to observe how humans err in different
max-finding tasks and how we can use their collective knowledge.

3.1 Workers’ Accuracy in Crowdsourcing
To find the properties required for our models, we performed

a series of experiments on the CrowdFlower croudsourcing plat-
form.5 We describe first the two datasets that we created and then
we provide some details about the CrowdFlower setup. The task at
hand is to ask workers to compare two items. The main question
that we want to address with our experiment is: is it always possi-
ble to simulate an expert by having multiple naïve workers answer
the same question independently, or is there a cognitive barrier, at
least for certain types of questions?

Datasets. We created two different datasets:6

• DOTS (inspired by [21]): It consists of a collection of images
containing randomly placed dots. The number of dots in each
picture goes from 100 to 1500, ranging in steps of 20.
• CARS: This dataset contains a description of cars. We down-

loaded a set of approx. 5000 new cars from the cars.com
web site. For each car we collected a photo, the make, model,
body style (e.g., SUV, sedan, coupe, etc.), engine informa-
tions, number of doors, and its price (in August 2013). We
cleaned the dataset and created a set of 110 cars with price be-
tween 14K and 130K. For every pair of cars the difference in
price is at least $500.
CARS a very noisy dataset. For instance we found several sets
of cars of the same make and model that varied significantly in
the price, often in the order of several thousands dollars. Most
of the times this difference is due to differences in equipment,
but sometimes different dealers also sell the same car at dif-
ferent prices. Showing the entire equipment to workers is im-
practical and would lead to higher spam rate, so we decided
to show only limited information about each car. We ensured
that for the same brand and year the car models are not re-
peated, by selecting a representative that was in the middle of
the price range.

Measuring Workers’ Accuracy. We used the CrowdFlower plat-
form, a paid crowdsourcing service, available since 2009. It offers
quality-ensured results at massive scale, good APIs, multiple chan-
nels, and has no restrictions for European users.

For each of dataset we used 50 elements for comparisons, and
some additional ones for gold comparisons, i.e., comparisons for
which the ground-truth value is provided and which are used by
CrowdFlower to evaluate the performance of workers and reduce
the effect of spam (responses of workers whose performance on
gold comparisons has accuracy less than 70% are ignored). In total,
15% of the queries that we performed are gold queries. We selected
pairs covering the overall range of values and differences. We sub-
mitted 105 pairs from DOTS and 154 from CARS (we found that
for the latter we needed more data points). For each pair to be com-
pared we requested at least 21 answers. Figure 1 shows snapshots
of the pairs presented to the workers.

Our goal is twofold. First, we want to measure the accuracy
of workers as the difference of the value of the two items under
5
http://crowdflower.com

6The datasets will become available at time of publication.

comparison varies. Second, we want to study to what extent we
can improve the accuracy by increasing the number of workers.

We summarize our findings in Fig. 2. In Fig. 2(a), which refers
to DOTS, each line corresponds to responses obtained for a given
range of difference between the actual number of dots. For ex-
ample, the red (lowest) line accumulates the responses of queries
where the relative difference between the number of dots ranged
from 0 to 10% (these are the hardest questions), whereas the green
(second lowest) corresponds to the range 10–20%. On the x-axis
we vary the number of workers whose (independent) responses we
observe (we consider the votes of 1 worker to 21 workers, ordered
by time of response) and on the y-axis we report the aggregate ac-
curacy of the workers when we take a majority vote. Independently
from the difference in the number of dots, the accuracy is quite low
when considering a single worker but improves as we ask more
workers, arriving very close to 1. Figure 2(b) shows the same plot
for CARS. When the relative difference between the price of the
two cars is relatively large, the accuracy approaches 1 as the num-
ber of workers increases. However, for smaller differences (up to
20%) the accuracy of the workers plateaus: it does not surpass 0.6
or 0.7, depending on the difference. We also measured the accuracy
when looking at the absolute difference rather than the relative one.
The results are qualitatively the same as the ones that we report so
we omit the corresponding plot.
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Figure 2: Relative accuracy of responses varying the number of workers for
different deltas.

This experiment allow us to draw two conclusions. First, we
need different error models to capture the different behaviors that
we observed. For the behavior in DOTS we need a model in which
the accuracy increases with the number of workers. Instead, for
CARS we need a model where, for small values of the difference,
an increase to the number of workers is not sufficient to increase
the accuracy. This is the topic of the next section. Second, if we
want to achieve a higher accuracy we often need multiple classes of
workers. This observation led us to the introduction and modelling
of experts, skilled workers that are able to correctly rank elements
with close values, but that require a higher monetary compensation.
This is the topic of Sect. 3.3.

3.2 Simple Error Models
There are a number of reasons and scenarios in which a worker

may commit a mistake as we mentioned in the introduction, and in
the previous section we saw that in different settings these can lead
to qualitatively different behavior. We next present the probabilis-
tic model, common in prior works, which can model the behavior
in DOTS, but not the one in CARS. We present a threshold-based
model, which also captures the behavior in the CARS experiment.
Probabilistic Error Model. A common approach is to assume that
error occurs with some probability, not necessarily fixed: when a
worker is given two elements to compare, she chooses the one with
highest value with some probability, and the one with lower value



with the residual probability, independently of any other compari-
son she or other workers might perform [4–6, 9, 11, 12, 23]. The
error probability may depend on the difference of the values of the
elements to compare, and grows as the difference shrinks, even
though for purposes of analysis a common assumption is that it
is fixed and independent from the difference.

Assume that for a given question, the probability of error is p <
0.5. Then one can show that if we ask the same question to k work-
ers, the probability that the element with lower value receives the

majority of error is bounded by e−
(1−2p)2

8(1−p)
k. It decreases exponen-

tially fast to 0 as k grows, implying that we can get arbitrarily good
precision by increasing the number of workers; this is qualitatively
the behavior that we observed in Fig. 2(a). Of course, one can
create instances for the DOTS on which we can not aim to reach
accuracy equal to 1: e.g., we can create one image with n dots (for
large n) and another with n + 1 dots. In this case, the probability
p of error is essentially 0.5 and it will not decrease no matter how
many workers we use.

The CARS experiment exemplifies situations in which the com-
parison tasks may require an expertise not possessed by unskilled
(naïve in the following) workers. Hence, it is not possible to achieve
arbitrary precision and confidence levels by just aggregating the
answers from a suitable number of naïve workers. To capture such
scenarios, we developed a generalization of the probabilistic model.

Threshold Model. To capture scenarios like those mentioned at
the end of the previous section, we consider the threshold model
T (δ, ε), an extension of the model introduced by Ajtai et al. [2]
to formalize the concept of Just Noticeable Difference by Weber
and Fechner (then generalized by Thurstone [20]). Here, when-
ever a worker is presented with two elements k, j to compare, she
chooses the less valuable one (i.e., errs) with a probability that de-
pends on their distance d(k, j) as follows: let δ be a nonnegative
parameter, which models the discernment ability of the workers,
and let ε ∈ [0, 1) be a residual error probability. If d(k, j) > δ
and (without loss of generality) v(k) > v(j), the worker returns k
with probability 1− ε and j with probability ε. Instead, if the two
elements have values close to each other (d(k, j) ≤ δ) the worker
returns either k or j completely arbitrarily. In particular, if asked
multiple times to compare k and j, the worker may return k on
some occasions and j in others, or always k or j. As a result, when
the question is hard, asking a lot of workers does not help increase
the accuracy, which is the behavior observed in CARS.

The parameter δ acts as a distance threshold, hence the name of
the model. In other words, if d(k, j) > δ, the worker is able to
discriminate between the two elements k and j, but for a number
of reasons she may still, with low probability, return the one with
the lower value. Modeling this uncertainty when the elements are
farther apart than the threshold δ allows us to take into account user
input errors, malicious workers, or prior bias that the workers may
have (we will show an example of this bias in the experiments).

We say that two elements u, v with d(u, v) ≤ δ are indistin-
guishable. A set of indistinguishable elements is a set of elements
such that each two of them are indistinguishable. Note that, as-
suming the comparison model we just described, it is impossible to
exactly compute the element M of L with maximum value if there
is another element e ∈ L indistinguishable from M .

For simplicity, we assume that if the difference is above the
threshold then the probability of error is the fixed value ε. This
can be generalized to an error probability that depends on the dif-
ference, as in the probabilistic model. In addition δ can take the
value 0, so the threshold model is a generalization of the proba-
bilistic model.

3.3 Threshold Model with Experts
The experimental findings of Sect. 3.1 demonstrate that there are

types of questions that typically require knowledge that is not in-
nate, nor naturally learnt; these questions exhibit an accuracy bar-
rier, which cannot be overcome without involving skilled workers
with the required expertise. Here, a skilled worker (expert in the
following) should be seen as an abstraction. In some scenarios, an
expert is an actual skilled worker, with the necessary expertise to
perform the required comparison tasks with an accuracy that is not
achievable by naïve workers. In other settings, an expert models the
extra effort needed to perform a comparison task with higher accu-
racy, for example, by accessing authoritative, external information
sources on the topic of the comparison. Yet another setting is where
the naïve worker corresponds, for example, to a machine-learning
algorithm and an expert to a human. The main characteristic is that
the presence of an actual expert or the acquisition of authoritative
information about the topic of a comparison cannot be simulated
by simply increasing the number of naïve workers. Crowdsourcing
platforms have become aware of this necessity and they have intro-
duced the concept of the experts, as we mention in the introduction.

The extension of the threshold model to capture experts is straight-
forward. The workers from W are split into two classes, one of
naïve workers and one of expert workers. Naïve workers follow the
threshold model T (δn, εn), whereas experts follow T (δe, εe), with
δn � δe and εe ≤ εn (possibly εe = 0). Given that there are now
two thresholds, we talk of naïve-indistinguishable elements for el-
ements u, v with d(u, v) < δn, and of expert-indistinguishable if
d(u, v) < δe. Indeed, under our model, two elements that are
expert-indistinguishable are also naïve-indistinguishable.

In the rest of this paper we set the residual error probability εe
of the experts to zero for simplicity of the analysis (all our results
carry over to the more general setting with high probability by re-
peating questions). Assuming that experts’ residual error probabil-
ity is vanishingly small is reasonable in practice, because usually
experts are not susceptible to the residual errors that naïve users are.
In particular, we expect them not to be spammers, they have some-
what complete information (e.g., they will hardly confuse a base
car model with a full-optionals one), they do not make input mis-
takes or have a wrong bias about the value of an object (e.g., they
would not be surprised if a specific Mercedes–Benz model costs
less than a Mazda). Still, it may very difficult even for them to pick
correctly between two elements with very close values.

3.4 Cost Models
We analyze our algorithms using different cost models for dif-

ferent resources. For each of them, we express the cost of the algo-
rithm as a function of the size of the input n = |L|.
Monetary Cost. The main measure of resource consumption that
is usually of interest in crowdsourcing applications is the number
of operations performed by workers, as they correspond directly
to monetary costs, given that workers are paid for each operation
they perform. In the presence of experts, we assume that naïve and
expert workers have different costs: experts have an associated cost
ce per operation that is much greater than the cost cn per operation
associated to naïve workers (ce � cn). Therefore, if an algorithm
performs xe(n) expert comparisons and xn(n) naïve comparisons,
the total monetary cost of the algorithm is

C(n) = xe(n) · ce + xn(n) · cn.

Time. Another important cost function is the time T(n, |W |), that
is, the number of physical time steps to compute the element e ∈ L
whose value approximates M . The number of time steps depends



on the number of available workers |W |: if there are not enough
workers, a single logical step of the algorithm will require multiple
physical time steps. The minimum number of workers needed to
perform each logical step as a single physical step (resulting in the
minimum7 T(n, |W |)) is

W(n) = max
t
|Wt| .

Note that the number of logical time steps of an algorithm can be
an unsatisfactory proxy for T(n, |W |) when the number of active
workers can considerably vary along consecutive time steps. When
instead this number is large enough or is substantially constant, as
remarked by Venetis et al. [23], the number of logical time steps is
a reasonable measure of the time complexity. We decouple logical
and physical steps in order to be as general as possible.

4. FINDING THE MAXIMUM ELEMENT
In this section we delve into the problem of finding the maxi-

mum among a set of elements. Apart from the foundational nature
of the problem, we study it for the following reasons: (1) many
common crowdsourcing tasks are essentially problems of finding
the maximum according to some criterion (e.g., finding the best re-
sult to a query, the most relevant ad to a page or query, or the best
design among a set of candidates); (2) indeed many past works on
crowdsourcing algorithms studied the problem of finding the max-
imum [13, 22, 23]; (3) it is well-specified and amendable to (albeit
nontrivial) theoretical analysis. Furthermore, we hope this work
will stimulate the rigorous and analytical study of yet more com-
plicated crowdsourcing problems (e.g., evaluation of classification
or other machine learning algorithms).

Given a multiset L of |L| = n elements from a universe U ,
our algorithm selects an element e ∈ L whose value is close to
the maximum value among the elements in L. We consider the
threshold comparison model with experts. Let M ∈ L be an el-
ement with maximum value among those in L. The algorithm
finds an element e ∈ L such that d(M, e) ≤ 3δe. Its time and
monetary costs depend on the value un(n) which represents the
number of elements in L that are naïve-indistinguishable from M :
un(n) = |{e : d(M, e) ≤ δn}|. Similarly, we define ue(n) =
|{e : d(M, e) ≤ δe}|. We assume that un(n) = o(n), which also
implies that ue(n) = o(n).

Remark. For the sake of presentation we assume that the residual
errors εn and εe (see Sect. 3) are equal to 0. Our results can be
extended to any values less than 1/2.

4.1 An Expert-Aware Max-Finding Algorithm
The algorithm consists of two phases, summed up in Alg. 1. In

the first phase, it uses naïve workers to filter out the majority of the
elements that cannot possibly be the maximum, leaving a small set
S of candidate elements containing M . In more detail, in the first
phase we solve the following problem:

PROBLEM 1. Given an initial set L of n elements, return a sub-
set S ⊂ L of size O(un(n)) that contains M , using only naïve
workers to perform comparisons.8

In the second phase, we apply a max-finding algorithm to the set
S found in the first phase, using only experts. More precisely, we
solve the following problem:

7For the given algorithm of course.
8The exact value of |S| and the reason for such a choice are motivated in Sect. 4.1.1.
In a nutshell, this choice allows to achieve an asymptotically optimal number of (naïve)
comparisons, as shown in Sect. 4.3.

Algorithm 1: Find an element close to the maximum M

input : A set L of n elements, a function un(n) = o(n).
output: An approximation of the maximum element M in L.

1 Obtain a set S ⊂ L using Alg. 2 with naïve workers
2 Return the output of Alg. 3 on input S with experts

PROBLEM 2. Given an input set S of sizeO(un(n)) containing
M , return an element e, such that d(M, e) = O(δe), using only
experts and performing as few comparisons as possible.9

One could solve this problem with Θ(|S|2) experts comparisons
by performing a simple round-robin tournament10 among the ele-
ments in S. In order to reduce the number of comparisons per-
formed by experts, we instead use one of the algorithms proposed
in [2, Sect. 3] and return the element found by this algorithm. More
details about the algorithm of choice for the second phase are given
in Sect. 4.1.2.

4.1.1 First phase
In the first phase we want to solve Problem 1 using only naïve

workers and requesting as few comparisons as possible to minimize
monetary cost. We outline our algorithmic approach in Alg. 2. It re-
lies on some combinatorial properties of round-robin tournaments,
which we prove below. In particular, Lemma 1 shows a key prop-
erty of element M in round-robin tournaments.

LEMMA 1. In a round-robin tournament among the elements of
L, the maximum element M wins at least n− un(n) comparisons.

PROOF. By definition of un(n), there are at most un(n) ele-
ments e such that d(e,M) ≤ δn, whereas M wins every element e
such that d(e,M) > δn.

The previous lemma suggests a way (described below) to filter
out elements that are certainly not the maximum and eventually ob-
tain a set of candidates for further processing by expert workers. In
the following lemma we prove that the size of this set is small. Ac-
tually, we prove a slightly more general result that holds for any set
of elements playing a round-robin tournament and any minimum
number of wins, and does not depend on the error model.

LEMMA 2. Let A be a set of elements and let r < |A|. In
a round-robin tournament among the elements of A, there are at
most 2r − 1 elements that win at least |A| − r comparisons each .

PROOF. Let S ⊂ A be the set of elements with at least |A| − r
wins. If |S| ≤ r the lemma follows immediately. So, assume that
|S| > r. Each element in S can win against at most |A| − |S|
elements from A \ S. Then each element from S must also win
against at least |S| − r other elements from S in order to have at
least |A| − r wins. Indeed, for a given element e ∈ S, let x be
the number of elements that e wins against among the elements in
A \ S and y the number of elements that it wins against among the
elements in S. We will now show that y ≥ |S| − r. Since e ∈ S,
we have that x+y ≥ |A|−r. In addition, x ≤ |A \ S| = |A|−|S|.
Combining these two equations we obtain y ≥ |A| − r − (|A| −
|S|) = |S| − r. Each element in S wins against at least |S| − r
other elements in S, so there must be at least |S| (|S| − r) wins of
elements in S against other elements in S. Within S one can play
at most

(|S|
2

)
comparisons, so we have that

9In practice, d(M, e) ≤ 3δe or d(M, e) ≤ 2δe, according to the algorithm used
to solve Problem 2; see Sect. 4.1.2.

10In a round-robin tournament, each element is compared against all others.



|S| (|S| − r) ≤
(|S|

2

)
,

which is true if and only if |S| ≤ 2r − 1.

Lemmas 1 and 2 combined lead to an efficient algorithm to solve
Problem 1, that is, to compute a set S ( L of size at mostO(un(n)),
such that M ∈ S. In particular, Lemma 1 suggests that we should
make sure that S contains all the elements that would win at least
n−un(n) comparisons in a round-robin tournament, otherwise we
may miss M . We could easily find S by performing a round-robin
tournament among all elements in L and then picking those that
win at least n − un(n) times; this would require

(
n
2

)
= Θ(n2)

comparisons. With the help of Lemma 2 we can find S more ef-
ficiently (i.e., with fewer comparisons) as follows. We partition
L into small subsets of size g = 4un(n) (except for one subset,
which may have fewer), and then perform a round-robin tourna-
ment within each subset. We discard elements that lose at least
un(n) comparisons in their subset round-robin tournament and we
keep those that win at least g − un(n) comparisons. In the next
level, we partition the set of all surviving elements into subsets of
size g and perform round-robin tournaments within each of the sub-
sets, and so on, until the set of survivors contains fewer than 2un(n)
elements. The pseudocode of the algorithm is presented as Alg. 2.
In Lemma 3 we prove its correctness and show that it performs
only O(nun(n)) comparisons. Later, in Sect. 4.3 we prove that
this bound is optimal, within constant factors.

Algorithm 2: Find a set of candidates containing the maximum
element M

input : A set L of n elements, a function un(n) = o(n).
output: A set of size at most 2un(n)− 1 containing the

maximum element M of L.
1 g ← 4un(n)
2 i← 0
3 Li ← L
4 while |Li| > 2un(n)− 1 do
5 Li+1 ← ∅
6 Partition Li into subsets G1, . . . , G` of size g (the last one

may be smaller)
7 forall the Gj , 1 ≤ j ≤ `− 1 do
8 Perform a round robin tournament among the elements

of Gj

9 Let Wj be the set of the elements of Gj that win at
least g − un(n) comparisons in the round-robin
tournament.

10 Li+1 ← Li+1 ∪Wj

11 end
12 if |G`| ≤ un(n) then
13 Li+1 ← Li+1 ∪G`

14 end
15 else
16 Let W` be the set of the elements of Gj that win at

least |G`| − un(n)
17 Li+1 ← Li+1 ∪W`

18 end
19 i← i+ 1

20 end
21 return Li

LEMMA 3. Algorithm 2 computes a set S such thatM ∈ S and
|S| ≤ 2un(n)− 1 by performing at most 4nun(n) comparisons.

PROOF. The fact that |S| ≤ 2un(n) − 1 follows trivially from
the condition of the while block on line 4 of Alg. 2. After each
round-robin tournament, we discard only elements that lose more
than un(n) comparisons so all elements that never lose more than
un(n) comparisons are never discarded and therefore are in S.
This means that in particular S contains all elements that, in a
round-robin tournament among all elements of L, would lose at
most un(n) comparisons or, equivalently, that would win at least
n − un(n) comparisons. From Lemma 1 we know that the maxi-
mum M ∈ L is in this latter set, so M ∈ S.

Suppose now that we are at iteration i and consider the elements
in a subset Gj of Li. After the round-robin tournament among
the elements of Gj , it follows from Lemma 2 applied to Gj that
there cannot be more than 2un(n) − 1 elements with at least g −
un(n) wins. Then at most 2un(n) − 1 elements from each set Gj

belong to Li+1. This means that (ignoring ceilings, for clarity of
the presentation) as long as |Li| ≥ 4un(n), we have

|Li+1| ≤
|Li|
g

(2un(n)− 1) = |Li|
2un(n)− 1

4un(n)
≤
|Li|
2

.

When |Li| drops below 4un(n), then, by Lemma 2, by the end
of the iteration we will obtain that |Li+1| < 2un(n) and in the
next iteration the algorithm will terminate. Therefore the algorithm
stops after at most i∗ iterations, with

i∗ = log2 n− log2 4un(n) + 1 ≤ log2 n.

Furthermore, we have that L0 = n, so
∑i∗

i=0 |Li| ≤ 2n.
At each iteration of the loop on line 4, the algorithm performs at

most
(
g
2

)
comparisons for the round-robin tournament of a group

Gi. In total, over all iterations and all groups, the number of com-
parisons that the algorithm performs is at most

i∗∑
i=0

|Li|
g

(
g

2

)
=

i∗∑
i=0

|Li| (g − 1)

2
≤ g

2

i∗∑
i=0

|Li| ≤ gn ≤ 4nun(n).

4.1.2 Second phase
The outcome of the first phase is a set S of size at most 2un(n)−

1 containing M ; the second phase is devoted to solving Problem 2,
that is, retrievingM (or a nearby element) from S, using experts to
perform comparisons. We have three options to solve Problem 2:

1. Perform a round-robin tournament on the set S and pick the
element ewi*th the most wins; it is guaranteed that d(M, e) ≤
2δe. This method requires Θ(un(n)2) expert comparisons.

2. Use the deterministic algorithm 2-MaxFind presented in [2,
Sect. 3.1]; it performs O(un(n)3/2) expert comparisons to
return an element e s.t. d(M, e) ≤ 2δe.

3. Use the randomized algorithm of [2, Sect. 3.2]; this performs
Θ(un(n)) expert comparisons returns an element e with the
guarantee that d(M, e) ≤ 3δe with high probability.

Clearly, we do not consider the first option as it is dominated by
the second one (assuming that we memorize results and we do not
repeat comparisons that we have already performed). For the the-
oretical analysis we assume that we use the third one. This allows
us to obtain asymptotically optimal results in terms of expert com-
parisons, with the downside that the value returned can be up to
3δe far from the maximum. In practice though it turns out that the
second option is superior to the third one for the values of n (and
un(n)) that we consider: even though the third option is a linear



algorithm, the constants are so high that for the values of n of our
interest they lead to a much higher cost. The second option has also
the advantage that returns an element that is closer to the maximum
(only 2δe far, the best possible for the model [2]). For this reason
we use the 2-MaxFind algorithm for the simulations in Sect. 5.

For the sake of completeness, we now outline the algorithm and
present its pseudocode in Alg. 3 (see also [2, Sect. 3.1]). Con-
sider the candidate set S returned by Alg. 2 and let s = |S| ≤
2un(n)−1. Algorithm 2-MaxFind works by iteratively selecting an
arbitrary subset of

√
s elements and then performing a round-robin

tournament between them. All the elements are then compared to
the “winner” of the tournament (i.e., one of the elements with the
highest number of wins). Those that lose against the winner are
removed. This process is iterated on the remaining elements until
only

√
s elements are left. A final round-robin tournament among

these elements determines the winner.

Algorithm 3: Find (approximation of) maximum element M
input : A set S of s elements.
output: An estimate of the maximum element M in S.

1 Label all items as candidates
2 while More than d

√
se candidates do

3 Pick an arbitrary set of d
√
se candidate elements and play

them in a round-robin tournament. Let x have the most
number of wins

4 Compare x against all candidate elements and eliminate all
elements that lose to x

5 end
6 Play a final round-robin tournament among the at most d

√
se

survivors and return the element with the most wins

4.2 Analysis of the Algorithm
In this section we analyze the correctness and efficiency of the

algorithm presented in the previous section. As we mentioned pre-
viously, for the purpose of the analysis, we assume that, in the sec-
ond phase, Algorithm 3 is replaced by its randomized counterpart
described in [2, Sect. 3.2].
Correctness. The following lemma shows the correctness of our
algorithm, assuming the randomized algorithm from [2, Sect. 3.2]
is used11 (i.e., option 3 from the previous discussion).

LEMMA 4. With probability at least 1−|S|−c, for any constant
c and S large enough, our algorithm returns an element e such that
d(M, e) ≤ 3δe.

PROOF. Immediate from the fact that S containsM and [2, The-
orem 4].

Cost analysis. The following lemmas quantify the various costs of
our algorithm assuming, as we mentioned, that in the second phase
we apply the randomized algorithm in [2, Sect. 3.2].

LEMMA 5. Given Wn naïve workers and We experts, the time
cost T(n) of our algorithm is

T(n) = O

(
logn

ng

Wn
+

(un(n))1.7

We
+

(un(n))0.6 log2 un(n)

We

)
.

PROOF. The first phase requires

i∗ ≤ log2 n

11The result holds deterministically if we use the 2-MaxFind algorithm.

logical steps to compute the set S. This is the number of iterations
of the loop on line 4 in Alg. 2 (see proof of Lemma 3). In each
of them we perform O(ng) comparisons, which take O(ng/Wn)
time steps to be performed by Wn naïve workers.

In the second phase we follow the algorithm in [2], which works
in two sub-phases. In the first sub-phase, it requires (un(n))0.7

rounds, in each of which O(un(n)) comparisons are performed, so
each round require O(un(n)/We) time steps, for a total of

O

(
un(n)1.7

We

)
time steps. In the second sub-phase, it performs a round-robin tour-
nament among the elements of a set of sizeO((un(n))0.3 log un(n)).
This requires O((un(n))0.6 log2 un(n)/We) time steps.

LEMMA 6. The optimum number of workers that minimize the
time cost of our algorithm is Wn(n) = O(ng) = O(nun(n))
naïve workers and We(n) = O(un(n) + (un(n))0.6 log2 un(n))
experts.

PROOF. The thesis follows easily from the proof of Lemma 5.

LEMMA 7. Our algorithm performs O(nun(n)) naïve and
O((un(n))1.7 + (un(n))0.6 log2 un(n)) expert comparisons. Ac-
cordingly, its monetary cost C(n) is

C(n) = O(cnnun(n)+ce((un(n))1.7+(un(n))0.6 log2 un(n))) .

PROOF. In the first phase of the algorithm we performO(nun(n))
comparisons, each at a cost cn. In the second phase we perform
O((un(n))1.7 + (un(n))0.6 log2 un(n)), each at cost ce.

If we use algorithm 2-MaxFind to perform the second phase, the
following theorem follows from Lemma 3 and from [2, Lemma 1]:

THEOREM 1. There is an algorithm that computes an element
e such that d(e,M) ≤ 2δe and that performs at most 4nun(n)

naïve comparisons and 2un(n)3/2 expert ones.

4.3 Lower Bounds
In this section, we study the inherent complexity of Problems 1

and 2, into which we have divided the task of the maximum element
of a set: (1) identifying a small candidate set containing the maxi-
mum using cheap, naïve workers and (2) selecting the maximum or
a nearby element out of S, using experts to perform comparisons.

We start with Problem 2, which is easier to analyze. It is sim-
ple to conceive instances of the problem for which un(n) elements
are naïve indistinguishable from the maximum. This implies that
the number of expert comparisons required, are in the worst case
Ω(un(n)). In fact, for the threshold error model we consider in
this paper, it is possible to prove stronger results. The following
theorem follows from [2].

LEMMA 8. Any deterministic algorithm that computes an ele-
ment e such that d(e,M) ≤ 2δe must perform at least Ω(un(n)4/3)
expert comparisons.

Next, we turn our attention to Problem 1. Here, we prove in
Corollary 1 below that the number of comparisons performed by
Alg. 2 in Phase 1 is optimal. To prove this corollary, we first show
the key fact that, if we want to identify a subset of elements con-
taining the maximum out of the initial set L of size n using naïve
workers, we need to identify all elements that win at least n−un(n)
comparisons in a round-robin tournament among the elements ofL,
because any of them could be the maximum.



LEMMA 9. Let C be any set of comparisons by naïve workers.
If there exists an element e that takes part in fewer than un(n)
comparisons in C, then there exists an assignment of values to the
elements such that (1) the assignment of values is compatible with
the outcomes of C and (2) e is the element with maximum value.

PROOF. Let element e have the maximum value, and let E1 be
the set of (at least n− un(n), by Lemma 1) elements that the max-
imum wins and E2 the other (at most un(n)) elements. We con-
struct the following instance (see Fig. 3). We arrange the elements
inE1 at distance about 1.5δn from e such that they are distinct (say,
we arrange then evenly in an interval of length 0.1δn, centered at
distance 1.5δn from element e). We arrange the elements in E2

in a similar way at distance 0.8δn from element e. This is a valid
instance for the model because there are at most un(n) elements
with distance at most δn from the maximum, and the maximum
wins against all the elements at distance more than δn. With the
exception of e, all the other elements are at a distance δn from each
other, so any comparison result among them is compatible with the
results in C.

Figure 3: Instance considered in the proof of Lemma 9.

As a corollary, we obtain the fact that if we want to return a small
set of candidates for the maximum, then we must make at least
Ω(nun(n)) comparisons. This number of comparisons is required
even if the algorithm returns a large (up to a constant fraction) set.

COROLLARY 1. Any algorithm that uses only comparisons by
naïve workers, and that returns a set S that is guaranteed to con-
tain the maximum and such that |S| ≤ n/2, must perform at least
nun(n)/4 comparisons.

PROOF. The algorithm returns the set S with candidates for the
maximum, so it deduces that no element in the set L \ S is the
maximum. By Lemma 9, each of the elements in L \ S must take
part in at least un(n) comparisons (otherwise it is impossible to
deduce for sure that it is not the maximum). We have |S| ≤ n/2,
therefore |L \ S| ≥ n/2. Each comparison involves two elements,
so the required number of comparisons is at least nun(n)/4.

4.4 Discussion
Algorithm optimizations. It is possible to optimize the implemen-
tation of the algorithm to reduce the time and monetary costs by re-
ducing the number of comparisons it performs in practice. Firstly,
we can avoid repeating the comparison of two elements multiple
times by the same type of workers. This can happen both in the
first phase (naïve workers) or in the second phase (experts). In par-
ticular, in the first phase we may have that two elements belongs to
the same group at different iterations of the loop on line 4: there is
no need to compare them again after the first time. The algorithm
will keep an n × n table containing, in the cell (i, j) the result of
the first comparison between element ei and element ej . A second
optimization allows to filter out more elements at the end of each
iteration of the loop. This would have the net result of having a

smaller Lw at the end of iteration w, and therefore terminating ear-
lier. To understand this optimization one should realize that what
the algorithm is doing in the first phase is trying to identify all the
elements that would win at least n−un(n) comparisons in a round-
robin tournament among all the n elements. Now, an element may
never lose more than un(n) comparisons in a single iteration of the
loop, but it may lose more than that (against different elements) in
multiple iterations. This would imply that in a global round-robin
tournament, the element would lose more than un(n) comparisons
so, according to Lemma 1 it can not be the maximum. We can
therefore keep, for each element, a counter of the number of losses
against different elements across all the iterations. At the end of
each iteration we check these counters for all the elements and re-
move from Li+1 the elements for which the counter is greater than
un(n).
On the estimation of un(n). A nice feature of the algorithm is
that it only requires one parameter, namely un(n), which would
depend on the application and on the crowdsourcing platform. In
practice, this value would have to be estimated. Using the results
of some sample comparisons on ground-truth data, one may find
at what distance the workers have difficulty distinguishing the ele-
ments. Note that this task becomes easier because of the fact that
overestimating has effect only on the number of comparisons and
does not harm the accuracy of the results.

5. EXPERIMENTS
To evaluate the efficiency of our algorithm we performed a series

of simulations, which we present next. Then we show how our al-
gorithm performs on real-life experiments, using the CrowdFlower
platform, described in Section 3.1.

5.1 Simulations
Our algorithm is optimal asymptotically in the sense that mini-

mizes both naïve and expert comparisons (Sect 4). Here we empir-
ically evaluate the efficiency of our algorithm and compare it with
2-MaxFind [2] (see also Sect. 4.1.2) when it uses only experts.

We study the performance of the two algorithms both on ran-
domly and on adversarially generated inputs. For the former, we
selected n random values independently and uniformly at random
from a range. We experimented with various parameters: n, δn,
δe; the last two define also the values of un(n) and ue(n), respec-
tively. When a worker is asked to rank a pair of elements whose
value difference is below the threshold, each element is chosen as
the answer with probability 1/2.

The adversarial data were created so as to maximize the num-
ber of comparisons of the 2-MaxFind algorithm. Specifically, in
all the comparisons of step 4 of Algorithm 3, whenever the differ-
ence is below the threshold, we make element x loose, in order to
maximize the number of elements that go to the next round. Fur-
thermore, whenever the algorithm compares two elements whose
values have a difference smaller than the threshold, the response is
such that it maximizes the running time of the algorithm. For our
algorithm we considered the upper bound predicted by the theory.

In Fig. 4 we can see the number of comparisons for our algo-
rithm and 2-MaxFind. First note how much smaller is the number
of expert comparisons; it only depends on the left-over set, and
is expected to stay constant as n grows. On the other hand, this
comes at a price. We now perform a high number of naiïve compar-
isons, actually higher than the number of expert comparisons that
2-MaxFind performs. Given though that we expect expert compar-
isons to have a much higher cost than naïve comparisons (obviously
the exact values will depend on the platform and on the applica-
tion), our algorithm leads to a significantly lower cost. In particular,



in the case where naïve comparisons are performed by machines
and expert ones by humans, the cost savings can be tremendous.
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(a) un(n) = 10, ue(n) = 5
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(b) un(n) = 30, ue(n) = 5
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(c) un(n) = 50, ue(n) = 5
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(d) un(n) = 50, ue(n) = 10

Figure 4: Number of comparisons as a function of n for different values of
un(n) and ue(n). Note that the y-axis is on a log scale. Lowest line: #
number of expert comparisons of our algorithm on the second phase; 2nd
and 3rd line from the bottom: average and worst-case # expert compar-
isons of 2-MaxFind; top 2 lines: average and worst-case (theoretical upper
bound) # expert comparisons of our algorithm.

5.2 Experiments on CrowdFlower
We also conducted a series of experiments on CrowdFlower,

with the goal of assessing to what extent our algorithm is able to
compute a value close to the maximum.

Settings. We used the datasets DOTS and CARS described in
Sect. 3.1. For each dataset we conducted two identical experiments,
namely, they have equal configuration and receive the same input
data. From each of dataset we downsampled a set of n = 50 el-
ements. This volume of data allows to draw conclusions on the
performance of the algorithm on real data at reasonable cost.

We implemented Algorithm 2 with a value of un(n) = 5. This
implies a value of g = 20. Yet, we estimated the number of com-
parisons required, and for the given number of n and un(n) it turns
out that g = 10 leads to a lower number of comparisons. We used
this value for our experiments. In the second phase we always end
up with at most 10 elements, so we just performed a round-robin
tournament among experts to deduce the winner.

CrowdFlower does not provide a service of experts for the prob-
lem that we address, so we simulated an expert query with 7 naïve
queries and choose the answer with the majority of votes, votes, just
as in Sect. 3.1. As we saw there, this approach is effective in the
DOTS experiment but not for CARS. Nevertheless we report the
results also for the latter and they confirm the findings of Sect. 3.1.

Experiments on DOTS. This experiment was inspired from pre-
vious work [21]. We used images of random dots extracted from
DOTS. In particular, we used 80 images of random dots (50 images
are used for building the dataset and 30 for the golden set, used
for gold comparisons). The golden set associated to this dataset is
formed by images with a number of dots from 200 to 800 with step
20. The two sets have no elements in common. We performed two
experiments asking the users to select the image with the minimum
number of random dots.

The final results were almost perfectand are summarized in Ta-
ble ??. In both experiments, nine elements passed to the second
phase, and in both they were the real top-9 elements. The second-
phase experts were able to always find the minimum, and, further,
the output correctly orders the top-9 elements, except in one case
for one experiments, in which the top-6 and top-7 elements are
swapped.

# dots Exp. 1 Exp. 2

100 1 1
120 2 2
140 3 3
160 4 4
180 5 5
200 7 6
220 6 7
240 8 8
260 9 9

Table 1: The ranking of the last round of the two DOTS experiments.

Experiments on CARS. In this experiment we wanted to study
the quality of the results when the data is much more fuzzy. We
attempted to find the car that is most highly priced.

We conducted two experiments. We can see the ranking of the
last round in Table 1. Note that the top car always reaches the last
round, yet the simulated experts are not able to identify it, indicat-
ing the need for real experts. Furthermore, note that because of the
fuzziness of the data some cars far from the top-10 arrive at the
second phase.

Model Price Exp. 1 Exp. 2

2013 BMW M6 Base - $123985 2 2
2013 Audi S8 4.0T quattro - $120375 5 -
2013 Mercedes-Benz ML63 AMG - $114730 - -
2013 Mercedes-Benz SL550 - $114145 2 1
2012 Mercedes-Benz SL550 - $111675 - 3
2013 Porsche Cayenne GTS - $97162 7 5
2013 BMW 750 Li xDrive - $95028 - -
2012 Audi A8 L 4.2 quattro - $88991 9 -
2013 Lexus LS 460 Base - $88110 - -
2013 Jaguar XJ XJL Portfolio - $84970 - -
2013 Chevrolet Corvette 427 - $83999 1 -
2013 Land Rover Range Rover Sport - $81151 - 6
2013 Cadillac Escalade Premium - $75945 - -
2013 BMW 550 i xDrive - $72895 5 4
2013 Infiniti QX56 Base - $71585 - -
2013 Audi A7 3.0T quattro Premium - $70020 - -
2013 Cadillac Escalade EXT Luxury - $68395 - -
2013 Porsche Cayenne Diesel - $67890 7 7
2013 Chevrolet Corvette Grand Sport - $66510 2 -

Table 2: Ranking at last round of the top-19 cars in the two experiments.

6. CONCLUSIONS
In this paper we defined computational and cost models for crowd-

sourcing, introducing the idea of using workers with different ex-
pertise levels. We considered different error models and different
costs that arise when optimizing the performances of algorithms for
crowdsourcing. The definition of the threshold error model with ex-
perts is a novelty of our work, and takes into consideration the fact
that in many applications it is not possible to simulate the experts
using naïve workers, as some of the real-life experiments presented



in Section 5 also suggest. We used these models to develop and an-
alyze an algorithm for approximate max-finding in these settings.
The algorithm uses naïve workers to filter out the majority of ele-
ments, and then asks the expert workers to focus on a restricted set.
We provide lower bounds to the number of comparisons required
to perform the task. An extensive experimental evaluation of the
models and the algorithm on synthetic and real-world problems us-
ing the Crowdflower platform shows that the former are realistic
and the latter performs well in practice. In particular, it shows that
for some applications simple crowdsourcing approaches can lead
to erroneous results, and it these cases the use of real experts is of
paramount importance.
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