
The Case for Predictive Database Systems:
Opportunities and Challenges

Mert Akdere, Ugur Cetintemel, Matteo Riondato, Eli Upfal, Stan Zdonik
Department of Computer Science

Brown University, Providence, RI, USA

{makdere, ugur, matteo, eli, sbz}@cs.brown.edu

ABSTRACT

This paper argues that next generation database management

systems should incorporate a predictive model management

component to effectively support both inward-facing applications,

such as self management, and user-facing applications such as

data-driven predictive analytics. We draw an analogy between

model management and data management functionality and

discuss how model management can leverage profiling, physical

design and query optimization techniques, as well as the pertinent

challenges. We then describe the early design and architecture of

Longview, a predictive DBMS prototype that we are building at

Brown, along with a case study of how models can be used to

predict query execution performance.

1. INTRODUCTION

Predictive modeling has been used with varying degrees of

success for many years [GH05]. As models grow more

sophisticated, and data collection and storage become increasingly

more extensive and accurate, the quality of predictions improves.

As such, model-based, data-driven prediction is fast emerging as

an essential ingredient of both user-facing applications, such as

predictive analytics, and system-facing applications such as

autonomic computing and self management.

At present, predictive applications are not well supported by

database systems, despite their growing prevalence and

importance. Most prediction functionality is provided outside the

database system by specialized prediction software, which uses

the DBMS primarily as a backend data server. Some commercial

database systems (e.g., the data mining tools for Oracle [Ora],

SQL Server [SS08], and DB2 [DB2]) provide basic extensions

that facilitate the execution of predictive models on database

tables in a manner similar to stored procedures. As we discuss

below, and also noted by others (e.g., [DB07, AM06]), this loose

coupling misses significant opportunities for improved

performance and usability. There has also been recent work on

custom integration of specific models (e.g., [JXW08, HR07,

ACU10, AU07, APC08]).

This paper argues that next generation database systems should

natively support and manage predictive models, tightly integrating

them in the process of data management and query processing.

We make the case that such a Predictive Database Management

System (PDBMS) is the natural progression beyond the current

afterthought or specialized approaches. We outline the potential

performance and usability advantages that PDBMSs offer, along

with the research challenges that need to be tackled when

realizing them.

A PDBMS enables declarative predictive queriesby providing

predictive capability in the context of a declarative language like

SQL; users will not need to concern themselves with the details of

tasks like model training and selection. Such tasks will be

performed by the optimizer behind the scenes, optionally using

hints from the user. Much as SQL has made programmers more

productive in the context of data processing, this approach will

have a similar effect for predictive analytics tasks. While there

will no doubt be some predictive applications that can benefit

from custom, manually optimized prediction logic, we expect that

many users will be satisfied with “commodity” predictive

functionality. The success of the recent Google Prediction API

[GP] is early evidence in this direction. This service allows users

to upload their historical data to the service, which automatically

and transparently performs model training and selection to

produce predicted results.

Predictive queries have a broad range of uses. First, they can

support predictive analytics to answer complex questions

involving missing or future values, correlations, and trends, which

can be used to identify opportunities or threats (e.g., forecasting

stock-price trends, identifying promising sponsor candidates,

predicting future sales, monitoring intrusions and performance

anomalies).

Second, predictive functionality can help build introspective

services that assist in various data and resource management and

optimization tasks. Today, many systems either use very simple,

mostly static predictive techniques or do not use any prediction at

all. This is primarily due to the difficulty of acquiring the

appropriate statistics and efficiently and confidently predicting

over them. For example, pre-fetching algorithms are often based

on simple linear correlations to decide future data or query

requests. Most admission control schemes are based on static

estimations (thresholds) of the maximum number of tasks that the

system can cope with. Load distribution algorithms

typically detect-and-react instead of predict-and prevent problems.

Query optimizers commonly use simplistic analytical models to

reason about query costs. There is major recent interest and

success in applying sophisticated statistical and learning models to

such problems [GKD09, BBD09, SBC06]. An integrated, readily

available predictive functionality would make it easy to not only

consolidate and replace existing solutions but also build new ones.

As such, an integrated predictive functionality would be an

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and

reproduction in any medium as well allowing derivative works, provided that

you attribute the original work to the author(s) and CIDR 2011.

5th Biennial Conference on Innovative Data Systems Research (CIDR ‘11)

January 9-12, 2011, Asilomar, California, USA.

important step towards building the truly autonomic database

systems of the future.

A PDBMS integrates predictive models as first-class entities,

managing them in much the same way as data. Thus, we consider

model management as the key underlying component of a

PDBMS. Model management may greatly benefit from analogues

of many well-established data management techniques:

 Profiling and modeling: Cost and accuracy characteristics

of models need to be modeled, and fed to the optimizer so

that the proper model(s) can be chosen for a given predictive

task.

 Physical design and specialized data structures: Data can

be structured to facilitate efficient model building and

predictive query execution (e.g., I/O-aware skip-lists

[GZ08]).

 Pre-computation and materialization: Model building is

often prohibitively expensive for ad hoc or interactive

queries. In such cases, models can be pre-built and

materialized for use by the optimizer and executor.

Furthermore, this process can be automated in many cases.

 Query optimization: The optimizer considers the alternative

ways of model building, selection, and execution, as well as

the inherent cost-accuracy tradeoffs when selecting an

execution plan.

In the rest of the paper, we discuss these model management

techniques as well as the technical challenges that arise when

building a PDBMS. Our discussion is centered on Longview, a

prototype predictive DBMS that we have been building at Brown

University. Longview is being designed to efficiently support

declarative predictive analytics through novel integrated model

management techniques. Users can plug new model types into the

system along with a modest amount of meta-data, and the system

uses these models to efficiently evaluate queries involving

predictions.

We sketch the basic architecture of Longview and its early

implementation on top of PostgreSQL. We also discuss an internal

predictive application, query performance prediction, which

exercises some of the model management issues we raise. Finally,

we discuss prior work and finish with concluding remarks.

2. BACKGROUND: PREDICTION WITH

MODELS

We use the term model to refer to any predictive function such as

Multiple Regression, Bayesian Nets, and Support Vector

Machines. Training a model involves using one or more data sets

to determine the best model instance that explains the data. For

example, fitting a function to a time series may yield a specific

polynomial instance that can be used to predict future values.

In general, model training (or building) involves selecting (i) the

feature attributes, a subset of all attributes in the data set, and (ii) a

training data set. In some cases, a domain expert can manually

specify the feature attributes. In other cases, this step is trivial as

the prediction attribute(s) directly determine the feature

attribute(s), e.g., as in the case of auto-regressive models.

Alternatively, feature attributes can be learned automatically.

Most solutions for automatic learning are based on heuristics,

since given a set of n attributes, trying the power set is

prohibitively expensive if n is not small or training is costly

[GH05, MWH98]. A common approach is to rank the candidate

attributes (often based on their correlation to the prediction

attribute using metrics such as information gain or correlation

coefficients [CT06]) and use this ranking to guide a heuristic

search [GH05] to identify the most predictive attributes tested

over a disjoint test data set. The training data set may be sampled

to speed up the process.

Prediction accuracy is a function of the quality of the estimated

models. The quality of the model (and the resulting predictions)

can be measured by metrics such as the variation distance [MU05]

or the mean square error between the predictions and the true

values. With assumptions about the underlying stochastic process,

one may be able to bound these measures analytically, using large

deviation theory, appropriate versions of the central limit theorem

and martingale convergence bounds [MU05]. Alternatively, one

can use multiple tests on available data to compute the empirical

values for these measures. However, using empirical values to

estimate the model or prediction error adds another layer of error

to the estimate, namely the gap between the empirical statistics

and the true value they estimate. While the empirical statistic is an

unbiased estimate, the variance of the estimate can be large,

depending on the size and variance of the test set.

Hypothesis testing and confidence interval estimations are two

common techniques for determining predictive accuracy

[MWH98]. In general, it is not possible to estimate a priori what

model would be most predictive for a given data set without

training and testing it. One form of hypothesis testing that is

commonly used is K-Fold Cross Validation (K-CV). K-CV

divides up the training data into k non-overlapping partitions.

One of the partitions is used as validation data while the other k-1

partitions are used to train the model.

3. LONGVIEW: A PREDICTIVE DBMS

3.1 Design and Architecture Overview

3.1.1 Data and Query Model

Longview provides two interfaces for access to its predictive

functionality. The first access method is the direct interface,

which consists of a collection of SQL functions that offers direct

access to the functionality of the integrated prediction models.

The direct interface does not provide the user with automated

model management tools and is thus targeted towards advanced

users who want to exert hands-on control on the prediction models

and their operations. For example, using this interface a user can

ask the system to build a linear regression model with specific

configuration parameters or perform prediction with a pre-built

support vector machine instance. We summarize the details of the

direct interface in Section 3.2.1.

The second access method is the declarative interface, which

offers additional, high-level predictive functionality on top of the

low-level direct interface.

This declarative interface extends SQL in a few simple ways to

accommodate the extra specifications needed for expressing

predictive queries. In particular, queries may refer to predictors

and predictor relations (p-relations) to access predictive

functionality. Predictors are essentially SQL functions that

provide declarative predictive functionality using system-

managed prediction models. P-relations are essentially views

produced by the application of predictors on select subsets of

input features. Both p-relations and predictors can be used in

conjunction with regular relations within standard SQL queries. A

p-relation is virtual by default; however, it can also be

materialized to enable further optimizations.

We give a simple example that illustrates some of the key

concepts of the query language that we are developing. Consider

the following schema:

Customer(cid, name, city),

Orders(oid, cid, total),

TrainData(cid, status)

In addition to the Customer and Orders relations, which store the

records for customers and their orders, we define the TrainData

relation that stores the status (either “preferred” or “regular”) of a

subset of the customers. We first show how to build a predictor

for predicting the status of any customer based on the training

data supplied for a subset of the customers. Next, we discuss p-

relations and their use through an example p-relation representing

the status predictions of a select subset of customers based on a

predictor.

The first step in creating a predictor is to define a schema

describing the set of involved features and target attributes. For

this purpose, we define a schema, named StatusSchema, with the

target attribute customer status and features name, city and total

using the CREATE P_SCHEMA statement:

CREATE P_SCHEMA StatusSchema (

name text,

city text,

total int,

TARGET status text)

To create a predictor, we use the CREATE PREDICTOR

statement that can be used to automatically build prediction

model(s) using the given training data set:

CREATE PREDICTOR StatusPredictor

ON StatusSchema(name, city, total, status)

WITH DATA

SELECT name, city, sum(total) as total, status

FROM Customer C, Orders O, TrainData T

WHERE T.cid = C.cid and T.cid = O.cid

GROUPBY cid, name, city, status

 WITH ERROR CVERROR(10, “relative_error”, 0.1)

With the statement shown above, we instruct the system to create

a predictor named StatusPredictor by training a set of prediction

models using the training data specified through a query. The last

part, WITH ERROR, defines the error estimation process. In this

example, we want to use 10-fold cross-validation and the

relative_error accuracy metric with a target average error of 0.1.

Notice that the decoupling between the schema and predictor

definitions allows us to create multiple predictors with different

data sets or accuracy requirements over a single schema.

The example query below illustrates the use of the StatusPredictor

for estimating the status of all customers:

SELECT C.cid, StatusPredictor(C.name, C.city, O.total)

FROM Customer C,

 (select cid, sum(total) as total from Orders

 Group By Cid) as O

WHERE C.cid = O.cid

The output schema of a predictor is defined by the associated

p_schema. In addition, one can add special ERROR attributes to a

p_schema to access the estimated errors for each predicted value.

For instance, adding the attribute “ERROR relerr real” to

p_schema would extend the output schema of a predictor with the

relerr attribute, which represents the estimated prediction error.

Now, we describe how to define p-relations with the following

example:

CREATE VIEW StatusPRelation AS

SELECT cid, StatusPredictor(name,city,total)

FROM (

 SELECT cid, name, city, sum(total) as total

 FROM Customer C, Orders O

 WHERE C.cid = O.cid

 GROUP BY cid, name, city, status

 HAVING sum(total) > 1000)

With the above statement, we create a p-relation named

StatusPRelation, which is basically a view consisting of status

predictions from StatusPredictor for the set of features specified

with the provided query (i.e., customers with order totals greater

than 1000) and the features themselves.

When a view definition that accesses a predictor function is

submitted to the system, Longview registers the given data set as a

specific target feature set for that predictor. In turn, the model

generation process for the predictor works to generate more

efficient and accurate prediction models based on the properties of

the given feature set.

The use of declarative queries for the specification of data sets in

model building and prediction offers an easy and flexible method

of expressing predictive operations over complex data sets. Users

can easily specify complex queries (e.g., computing aggregates

over groups) to supply input data sets for prediction models.

Moreover, it is also possible to use database views as data

providers. For instance, a database view can be used to perform

standard pre-processing tasks such as cleaning, normalization, and

discretization [DB07], and can cook the raw data into a form that

is more amenable for effective learning.

3.1.2 Basic Architecture

We illustrate the high-level architecture of Longview in Figure 1,

which shows the primary functional units of interest, along with

the data they require. The architecture reflects the notion of

models as first-class citizens by depicting the data manager and

model manager as co-equal modules.

The Data Manager is very similar to a typical data manager in a

conventional DBMS. The Model Manager is responsible for

creating materialized models a priori (materialized) or in an on-

demand fashion when an adequate materialized model does not

exist. The role of materialized models in the model world is

similar to that of indices and materialized views in the data world:

they are derived products that can be used to quickly generate data

of interest. Indices and materialized views improve query speed

while materialized models improve prediction speed.

The Model Manager trains appropriate models (based on the

available model templates) for each predictor in the database. The

Model Manager can run as a background process, constantly

instantiating models for improved accuracy and efficiency. In

order to build and maintain prediction models, the Model

Manager can utilize many different strategies. For example, it can

choose to sample data at different amounts and times and it can

build different types of prediction models over different subsets of

available features. In addition, the Model Manager also

determines the best model for the query at hand: if an appropriate

model has already been pre-computed and materialized, it will

identify and use that model; if not, it will create a new

instantiation on the fly.

The Model Manager and the Data Manager must cooperate in

their decision making. As we discuss later, special data structures

can assist the process of model training. This is consistent with the

fact that DBMSs, in general, get much of their performance gains

from supporting specialized data structures like indices.

Model meta-data entered through the model interface as well as

those derived during run-time such as the list of materialized

models and their parameters, training results, error values for

various data sets, are all stored in a model catalog. The model

manager is responsible for updating the catalog.

Longview will try to produce a good model whenever possible by

trying various parameter assignments (e.g., history length,

sampling density, etc.) and using hypothesis testing to find the

best fit. While Longview aggressively tries to optimize this model

search process, in some cases, this is either not possible or would

require testing too many alternatives. In these cases, Longview

will provide a set of tools with which the DBA can inspect the

data and add additional information about the datasets which

might indicate, for example, that the data is seasonal, or that the

data might best be modeled using exponential smoothing.

Traditional DBMSs provide such tuning tools for DBAs as well.

P-relation queries are written against views that include predicted

attributes. When a p-relation query is received by the system, the

optimizer might generate a query plan that contains prediction

operators. These operators are selected from a collection of

instantiated models that are managed by the Model Manager, or

created on the fly. Alternatively, tuples in the predicted view can

be computed eagerly and materialized as resources become

available, in which case p-relation queries can be executed as

scans over the materialized tuples.

3.2 Model Management

As a design philosophy towards a generic model manager, we

strive to build on existing database extension mechanisms such as

views, triggers, rules and user defined functions to simplify our

implementation and produce highly portable functionality.

3.2.1 Database Integration of Prediction Models

Prediction Model API. Longview currently supports a black-

box-style integration approach that allows existing model

implementations (available from a plethora of standalone

applications and libraries such as libsvm [CC01]) to be used by

the system as database functions. This approach offers an easy

and effective way of utilizing pre-tested and optimized prediction

logic within a SQL execution framework. New prediction models

are registered into the system by providing implementations of a

simple model interface (the prediction model API) describing

function templates for training and application of prediction

methods. This interface decouples implementation and predictive

functionality, while allowing multiple predictive models to be

used for the same task. Table 1 summarizes the basic interface

methods.

Function Arguments Description

Build
training data
model parameters

feature and target values
model-specific training parameters

Predict

model pointer

feature list

pointer to previously built model

feature values for use in prediction

Serialize model pointer

Deserialize byte array serialized model

The build function is used to train a prediction model based on the

given features and target values, as well as model-specific training

parameters. The predict function uses a previously built model to

predict a target attribute based on the input feature values. Finally,

Longview uses the serialize and de-serialize functions to store and

retrieve prediction models. Most third-party model libraries

include built-in model (de)serialization methods for this purpose.

Prediction Model Direct Interface. The prediction model API is

used internally by the Longview system to access the functionality

of prediction models and is not visible to the user. However, as

mentioned earlier, Longview also provides an interface for direct

access to the prediction models by the user. The main functions

included in this interface are given in Table 2. These functions

have dynamic implementations in Longview, as wrappers around

the prediction model API, and provide a unified method of access

to all the available prediction model types within SQL statements.

The create function is used to create a prediction model entry in

the model catalogs for the given model type and attribute schema.

The Longview model catalog stores all model data and associated

meta-data. Each model instance built is recorded in a relation that

contains a unique (auto-generated) instance id, model type, and a

serialization field storing the type-specific representation of a

prediction model (e.g., the coefficients of a regression model). We

also store model attributes; each is represented with a name, id, a

type (e.g., double) and a role (i.e., feature, target).

The build and predict SQL-functions are similar to the

corresponding functions in the prediction model API. The build

Figure 1: High-level Longview architecture. The system

provides full-fledged support for models; model and data

management are tightly integrated.

Table 1 - Prediction Model API

function trains the prediction model specified by the model id, and

stores its serialized representation in the model catalog. The

predict function performs prediction with the given model id over

the provided feature data set. We also provide a test function that

can be used to apply the model on a feature data set and compute

its accuracy over the true values of the target attributes. We

provide an argument to specify the accuracy function for use (e.g.,

absolute error, squared error). The outputs of the test and

prediction functions are represented as relations and can be used

as data sources in other queries.

Function Arguments Description

Create

model schema

model type

description of features and target

attributes
prediction model type

Build

model id

training query

model

parameters

specifies the model instance

query computing the feature and

target values
model-specific training parameters

Predict

model id

feature list |
query

feature values for use in prediction

Test

model id

training query
accuracy

options

parameters for the accuracy

function

3.2.2 Model Building and Maintenance

Model Materialization. Longview builds and materializes model

instances much as a conventional DBMS pre-computes indices or

materialized views. For each predictor and associated p-relations,

there can be multiple materialized prediction models built using

different model types and different feature subsets. As a result,

model building and maintenance may easily become a bottleneck

as the number of pre-built models increases. Therefore, methods

for decreasing the cost of building and maintaining models are an

essential part of Longview.

The quality of a model is primarily a function of its training data

and model-specific configuration parameters. In the limit, we

would like to produce one materialized model for each prediction

query. This approach will likely be infeasible for two reasons: (1)

the time required to build a model per query is larger than some

target threshold, e.g., in applications involving interactive queries;

and (2) the estimated time required to update these models in the

face of newly arriving data is greater than some maintenance

threshold.

In many ways, this problem is very similar to the problem of

automatic index or materialized view selection. We require (1) a

reasonably good cost and accuracy model that can be used to

compare the utility of the materialized models, and (2) a way to

heuristically prune the large space of possible models.

A good solution to this problem involves covering the underlying

“feature space” well such that a prediction with acceptable

accuracy can be made for a large set of queries subject to a limit

on model maintenance costs. In prior work, we proposed a

solution along these lines for time-series-based forecasting using

multi-variate regression [GZ08].

In addition to the techniques mentioned earlier such as sampling,

feature selection and materialized models, there are further

opportunities to reduce the execution costs of these tasks. First,

these operations can be done in parallel for multiple models on the

same data. In this multi-model building process (akin to multi-

query optimization), data can be read once and all relevant models

can be updated at the same time. Moreover, we can build and

update models in an opportunistic manner based on memory-

resident data.

Auto Design. The auto-design problem is a related problem in

which the goal is to choose and build a set of prediction models

based on a given workload that contains a set of predictive queries

that are most likely to be submitted, i.e., queries that we would

like to execute quickly and with good predictive accuracy. For

this purpose, the database system would need to identify the most

common prediction attributes in the workload and then the set of

features that are highly predictive of those attributes.

Specialized Data Structures. There are opportunities for a

PDBMS to leverage data representations that are tuned to the

process of prediction. In particular, structures that can enhance

model training have the most potential to yield major performance

improvements with the idea being accessing “just enough” data to

build a model of acceptable accuracy.

Data-driven training commonly involves accessing select regions

in the underlying feature space, combined with sampling

techniques that can be used to further reduce I/O requirements.

This process is often iterative: more data is systematically

included to check if the resulting model is better. In general,

multi-dimensional index structures defined over the feature space

can be effectively used here, but care must be taken that index-

based sampling does not introduce any biases. Multi-dimensional

clustering, when performed in a manner that facilitates efficient

sampling, can provide further benefits. As an alternative to the

index-based sampling of disk-resident data, we can also opt to

replicate the data (or materialize the results of a training query)

using disk organizations tuned for efficient sampling, e.g.,

horizontally partition the data into uniform samples so that

sampling can be done with sequential I/O.

As a concrete example for time-series prediction, we introduced a

variant of skip lists to efficiently access arbitrary ranges of the

underlying time dimension with different sampling granularities.

The original skip-list formulation is modified to make it I/O

conscious by copying the relevant data from each lower level up

to the higher-levels. Each level is essentially a materialized

sample view [JJ08] stored in clustered form on disk, allowing us

to access a particular time range with desired density with a small

number of disk accesses (see Figure 2 for an illustration).

Table 2 - Prediction Model Direct User Interface

2
7

9

15

18
24

27

30 NIL

33
34

()
M1()

M2

()
M3

()M4

()
M5

22
77

99

1515

1818
2424

2727

3030 NILNIL

3333
3434

()
M1()

M2

()
M3

()M4

()
M5

Figure 2: I/O conscious skip-lists. Each node indicates a block

of tuples sampled from the original relation. Unlike in

standard skip lists, nodes (blocks) are not shared across levels.

M’s indicate different time ranges and sampling density.

3.2.3 Query Execution and Optimization

Predictor optimization. Declarative predictive queries specify

what to predict but not how. For a given prediction task, it is the

responsibility of the predictor to build and use an appropriate

prediction model satisfying the desired accuracy. For this purpose,

each Longview predictor continuously tries to build accurate

prediction models for as much of its input feature space as

possible, while keeping resource consumption under a

configurable threshold to avoid negatively impacting the other

database tasks. In the case of p-relations, predictors can build

more targeted prediction models using select parts of the training

data (i.e., model segmentation) based on the target data of p-

relations. We discuss an application of the model segmentation

idea and demonstrate its potential in Section 4.

In addition, Longview automatically keeps track of model cost-

accuracy characteristics. For each model instance, the run-time

cost and quality of the predictions during build and test operations

are recorded. Using this information, Longview can monitor the

evolution of models, track the used training data sets and the

performance values on test data sets. These model profiles guide

query optimization decisions. We may also expect expert users (or

model developers) to supply simple cost functions, akin to those

for the relational operators, for training and prediction costs,

which can also be stored and leveraged as part of model profiles.

Finally, we observed the need for a more formal, expressive tool

when working with sophisticated prediction models. To this end,

we believe that a model algebra that captures common model

operations such as choice (selection), composition, and merge is

warranted. Properties of these operations could introduce further

functionality as well as optimization opportunities. A model

ensemble, which uses a set of prediction models collectively to

perform a prediction task, is an example for this complex model

case. Model ensembles rely on the collective power of multiple

prediction models to smooth their predictions and mitigate the

potential errors from a single prediction model.

Online execution. Online execution of predictive queries (along

the lines of online aggregation), in which predictions, and thus the

query results, get progressively better over time, is an important

usage model for interactive, exploratory tasks. Predictive accuracy

can be improved over time using more data, more features, or

more models. The challenge is to effectively orchestrate this

process and perform efficient revision of query results.

4. CASE STUDY: PREDICTING QUERY

EXECUTION LATENCIES

We now describe our ongoing work on an inward-looking

predictive task, query performance prediction (QPP), which

involves the estimation of the execution latency of query plans on

a given hardware platform. Modern database systems can greatly

benefit from accurate QPP. For example, resource managers can

utilize QPP to allocate workload such that interactive behavior is

achieved or specific quality of service targets are met. Optimizers

can choose among alternative plans based on expected execution

latency instead of total work incurred.

While accurate QPP is important, it is also challenging: database

systems are becoming increasingly complex, with several

database and operating system components interacting in

sophisticated and often unexpected ways. Analytical cost models

are not designed to capture these interactions and complexity. As

such, while they do a good job of comparing the costs of

alternative query plans, they are poor predictors of plan execution

[GKD09].

As an alternative, we express the QPP task using the declarative

prediction interface in Longview. In addition to describing the

query specification and execution, we also show different

modeling approaches to achieve accurate QPP under various

workload scenarios. If a representative workload is available, for

example, we can build good models using coarse-grained, plan-

level models. Such models, however, do not generalize well, and

perform poorly for unseen or changing workloads. In these cases,

fine-grained, operator-level modeling performs much better due to

its ability to capture the behavior of arbitrary plans, although they

do not perform as well as plan-level models for fixed workloads.

We then build hybrid models that combine plan- and operator-

level models to provide the best of both worlds by striking a good

balance between generality and accuracy.

Plan-level Prediction. We first consider a basic approach that

extracts features from query plans and then couples them with

sample plan executions to build models using supervised learning

(as also explored in [GKD09]). Once built, these models can

perform predictions using only static plan information. The

following features are extracted from each query plan for

modeling purposes: optimizer estimates for query plan costs,

number of output tuples and their average sizes (in bytes), and

instance (i.e., occurrence) and cardinality counts for each operator

type included in the query plan.

We integrated two prediction models, Support Vector Machines

and Linear Regression, into the PostgreSQL database system

(version 8.4.1) through the use of machine learning libraries

LIBSVM [CC01] and Shark [IMT08]. We used the TPC-H

decision support benchmark to generate our database and query

workload. The database size is set to 10GB and experiments were

run on a 2.4 GHz machine with 4GB memory. Our query

workload consists of 500 TPC-H queries, which are generated

from 18 TPC-H query templates and executed one after another

with clean start (i.e., file system and database buffers are cleared).

Fixed Workload Experiment: In the first experiment, we defined a

plan-level predictor using the described query plan features and

the execution time target attribute as our p_schema (named

PlanSchema). For this purpose, we first inserted the runtime query

plan features and the execution times of all queries in our TPC-H

workload to database tables (runtimefeats and qexec). Then, we

defined our predictor to use 90% of the workload for building

prediction models to estimate the execution times of the

remaining 10% of the queries. We provide the definition of the

plan-level predictor below; however at this point we do not have a

SQL parser for the extensions proposed in the declarative

predictor interface and thus performed our operations using the

direct interface along with a few additional SQL functions that

provide functionality similar to the declarative predictor interface.

CREATE PREDICTOR PlanLvlPredictor

ON PlanSchema(…)

WITH DATA

 SELECT R.*, Q.exec_time

 FROM runtimefeats R, qexec Q

 WHERE R.qid = Q.qid and R.qid <= 450

The qid attribute is a key in both tables that uniquely defines a

query in the TPC-H workload. Next, we used the pre-runtime

estimations of the query plan features from the query optimizer

(stored in table estimatedfeats) for performance prediction of the

remaining 10% of the queries. The following query is used to

express this operation:

SELECT qid, PlanLvlPredictor(…).exec_time

FROM estimatedfeats E

WHERE E.qid > 450

In this experiment, we used support vector machines (SVMs) as

our prediction model. In addition, our current predictor optimizer

uses a standard feature selection algorithm for choosing the set of

features to use in prediction models. The set of features (7 of the

total 29 features) used in the resulting model are: number of

Group Aggregate, Hash Aggregate, and Materialization operators,

estimated total plan cost, cardinality of Hash Aggregate and Hash

Join operators and the estimated total number of output rows from

all operators in the query plan. The error value (defined as |true

value – estimate| / true value) for each TPC-H template is shown

in Figure 3 (The average prediction accuracy is 90%).

We observed that queries from the 9th template (which has the

unusual high errors) run close to the 1 hour time limit (after which

we killed and discarded queries) and therefore execute longer than

most other queries. We then performed manual model-

segmentation by building a separate prediction model for the

queries of the 9th template, which achieved 93% accuracy.

This example illustrates the potential efficiency of using

segmented models built from different data partitions. As

discussed before, intelligent model-building algorithms that

automatically identify such partitions in the feature space are

essential for improved accuracy.

Finally, when we added the additional feature used by that model

(cardinality of the Nested Loop operator) to the general prediction

model and retrained it, we increased its accuracy to 93% (shown

with the bars for 2-step feature selection in the figure).

Figure 3: Query Prediction Performance for TPC-H Queries.

Changing Workload Experiment: In this experiment, we built

separate prediction models for each TPC-H template using only

the queries from the other TPC-H templates for training. In this

case the average prediction error increased to 232%. In addition,

the error values were highly dependent on the target query

template and were distributed in a large range (2% to 1692%).

Operator-level Prediction. We also studied an operator-level

modeling approach with the goal of building better models for the

Changing Workload scenario. In this case, we build separate

Linear Regression models to estimate the execution time for each

operator type and compose them in a bottom-up manner up the

query tree to predict the total execution time.

Each operator is modeled using a generic set of features such as

the number of input/output tuples and estimated execution times

for child operators (runtime and estimated values for these

features are stored in opruntimefeats and opestimatedfeats tables).

Bottom-up prediction requires a nested use of predictors.

Moreover, the connections between predictors are dynamic as

they depend on the plan of the query at hand. Currently, we

perform this nested prediction operation within a user-defined

database function that uses the operator predictors as required by

the plan of each query. We think that such complex models can be

built and used more effectively with a model algebra as mentioned

in Section 3.

The results for the Changing Workload experiment using the

operator-level prediction methods are shown in Figure 3 for 10

TPC-H templates. The average error rate is 56%, which represents

a major improvement over query-level prediction for this

workload.

Hybrid Prediction. Looking closer, we observe that the error (of

233%) for the operator-level prediction of template 4 queries is

much higher than those for other templates. To gain more insight,

we provide the error values for each operator in the execution plan

for an example template-4 query (Figure 4). Observe that the

errors originate from the

highlighted sub-plan and

propagate to the upper

levels. Here, the error is

due to the inability of the

models to capture the per-

tuple processing time of

the Hash Aggregate

operator, which in this case

is computation-bound.

Thus the I/O cost of the

Sequence Scan operation

that normally determines

the overall execution

latency is dominated by

Hash Aggregate’s high

computational cost in this

case. The fundamental

problem is that operator-

level training inherently

fails to capture the

“context” of the operator behavior.

To solve this problem, we combined the plan- and operator-level

prediction methods for template 4 by modeling the highlighted

sub-plan with a plan-level model and using operator-level

prediction for the remainder of the query plan. With this approach,

we reduced the template error to 53% and the overall average

error across templates to 38% for the Changing Workload

scenario.

5. RELATED WORK

We draw from a large number of subject areas, which we

summarize below. Other closely related work was cited inline as

appropriate.

Figure 4: Query Tree and

Prediction Errors for Template 4.

Major commercial DBMSs support predictive modeling tools

(e.g., Oracle Data Mining tools, SQL Server Data Mining and

DB2 Intelligent Miner). Such tools commonly allow users to

invoke model instances, typically implemented as stored

procedures, using extended SQL (e.g., the “FORECAST” clause

[Ora]). In SQL Server Analysis Services, users are provided with

a graphical interface within Visual Studio in which they can

interactively build and use a number of prediction models such as

decision trees and naïve Bayes networks. While we utilize similar

prediction models and techniques, our goal is to create a more

automated and integrated system in which predictive functionality

is mostly managed by the system with help from the user (akin to

existing data management functionality).

On the academic side, MauveDB [AM06] was an early system to

support model-based views defined using statistical models. Such

views can be used for a variety of purposes including cleaning,

interpolation and prediction (with a focus on sensor network

applications). The PDBMS functionality we sketch in this paper

goes significantly beyond the scope of MauveDB. Our direct

prediction interface and MauveDB views have similar

functionality and purpose. However, we believe that automated

model building and maintenance services, such as our declarative

predictor interface, are essential for commoditization of predictive

functionality.

Another closely related system is Fa [DB07], which was designed

to support forecasting queries over time-series data. Fa offers

efficient strategies for model building and selection, making a

solid contribution towards model management and predictive

query processing. Longview can leverage many of Fa’s

techniques but also aims for deeper, more comprehensive model

management, by treating models as native entities and addressing

the entire predictive model life cycle.

Recently, there have been successful applications of machine

learning techniques to DBMS self-management problems. Query-

plan-level predictions have been studied in [GKD09]. NIMO

proposed techniques for accelerating the learning of cost models

for scientific workflows [SBC06]. Performance prediction for

concurrent query workloads was investigated in [AAB08].

6. CONCLUDING REMARKS

We argue that it is high time for the database community to start

building predictive database systems. We discussed how

predictive queries could meaningfully leverage and, at the same

time, contribute to next generation data management. We

presented our vision for a predictive DBMS called Longview,

outlined the main architectural and algorithmic challenges in

building it, and reported experimental results from an early case

study of applying the predictive functionality for query

performance prediction.

ACKNOWLEDGEMENTS

This work is supported in part by the NSF under grant IIS-

0905553.

7. REFERENCES

[AAB08] Ahmad, M., Aboulnaga, A., Babu, S., and Munagala, K.

Modeling and exploiting query interactions in database systems.

CIKM 2008.

[ACU10] M. Akdere, U. Cetintemel, E. Upfal: Database-support

for Continuous Prediction Queries over Streaming Data. PVLDB

3(1), 2010.

[AM06] A. Deshpande and S. Madden, MauveDB: Supporting

Model-based User Views in Database Systems. SIGMOD 2006.

[AU07] Declarative temporal data models for sensor-driven query

processing. Y. Ahmad and U. Cetintemel. DMSN 2007.

[APC08] Simultaneous Equation Systems for Query Processing

on Continuous-Time Data Streams. Y. Ahmad, O.

Papaemmanouil, U. Cetintemel, J. Rogers. ICDE 2008.

[BBD09] S. Babu, N. Borisov, S. Duan, H. Herodotou, and V.

Thummala. Automated Experiment-Driven Management of

(Database) Systems. HotOS 2009.

[CC01] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library

for support vector machines, 2001. Software available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of

Information Theory. Wiley-Interscience, 2006.

[DB2] DB2 Intelligent Miner Web Site.

http://www01.ibm.com/software/data/iminer/

[DB07] S. Duan and S. Babu, Processing Forecasting Queries.

VLDB'07.

[GH05] J. G. De Gooijer and R. J. Hyndman. 25 Years of IIF

Time Series Forecasting: A Selective Review. June 2005.

Tinbergen Institute Discussion Papers No. TI 05-068/4.

[GKD09] A. Ganapathi, H. Kuno, U. Dayal, J. Wiener, A. Fox,

M. Jordan, D. Patterson: Predicting Multiple Metrics for Queries:

Better Decisions Enabled by Machine Learning. ICDE 2009.

[GP] Google Prediction API, http://code.google.com/apis/predict/

[GZ08] Tingjian Ge, Stan Zdonik. A Skip-list Approach for

Efficiently Processing Forecasting Queries. VLDB 2008.

[HR07] H. Bravo, R. Ramakrishnan. Optimizing mpf queries:

decision support and probabilistic inference. SIGMOD 2007.

[IMT08] Christian Igel, Verena H., and Tobias G. Shark. Journal

of Machine Learning Research, 2008.

[JJ08] Shantanu Joshi and Chris Jermaine. Materialized Sample

Views for Database Approximation. IEEE Trans. Knowl. Data

Eng. 20(3): 337-351 (2008)

[JXW08] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, P.

Haas: MCDB: a monte carlo approach to managing uncertain

data. SIGMOD 2008.

[MU05] Mitzenmacher, M., Upfal, E. Probability and

Computing: Randomized Algorithms and Probabilistic Analysis.

[MWH98] Makridakis, S., Wheelwright S., and Hyndman, R.

Forecasting Methods and Applications. Third Edition. John

Wiley & Sons, Inc. 1998.

[Ora] Oracle Data Mining Web Site.

http://www.oracle.com/technology/products/bi/odm/index.html

[SBC06] P. Shivam, S. Babu, and J. Chase. Active and

Accelerated Learning of Cost Models for Optimizing Scientific

Applications. VLDB 2006.

[SS08] Microsoft SQL Server 2008.

www.microsoft.com/sqlserver/2008/en/us/datamining.aspx

http://jmlr.csail.mit.edu/papers/volume9/igel08a/igel08a.pdf
http://www.cise.ufl.edu/~cjermain/ace.pdf
http://www.cise.ufl.edu/~cjermain/ace.pdf
http://www.oracle.com/technology/products/bi/odm/index.html

