All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

There is large diversity in the web-graph node connectivity.

Let’s rank the pages by the link structure!
PageRank: The “Flow” Formulation
Idea: Links as votes

- Page is more important if it has more links
 - In-coming links? Out-going links?

Think of in-links as votes:

- www.stanford.edu has 23,400 in-links
- www.joe-schmoe.com has 1 in-link

Are all in-links are equal?

- Links from important pages count more
- Recursive question!

Each link’s vote is proportional to the importance of its source page.

If page j with importance r_j has n out-links, each link gets r_j/n votes.

Page j’s own importance is the sum of the votes on its in-links:

$$r_j = r_i/3 + r_k/4$$
A “vote” from an important page is worth more

A page is important if it is pointed to by other important pages

Define a “rank” r_j for page j

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$$

di ... out-degree of node i

"Flow" equations:

$$r_y = \frac{r_y}{2} + \frac{r_a}{2}$$
$$r_a = \frac{r_y}{2} + r_m$$
$$r_m = \frac{r_a}{2}$$

The web in 1839
Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo the scale factor

- Additional constraint forces uniqueness:
 - \(r_y + r_a + r_m = 1 \)
 - Solution: \(r_y = \frac{2}{5}, \ r_a = \frac{2}{5}, \ r_m = \frac{1}{5} \)

- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs

- We need a new formulation!
PageRank: Matrix Formulation

- **Stochastic adjacency matrix** M
 - Let page i has d_i out-links
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a **column stochastic matrix**
 - Columns sum to 1
- **Rank vector** r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$
- The flow equations can be written
 $$r = M \cdot r$$
Example

- Remember the flow equation:
- Flow equation in the matrix form
 \[M \cdot r = r \]
- Suppose page \(i \) links to 3 pages, including \(j \)

\[
\begin{array}{c}
M \\
\cdot \\
r \\
= \\
r
\end{array}
\]

Eigenvector Formulation

- The flow equations can be written
 \[r = M \cdot r \]

- So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \)
 - In fact, its first or principal eigenvector, with corresponding eigenvalue \(1 \)
 - Largest eigenvalue of \(M \) is \(1 \) since \(M \) is column stochastic (with non-negative entries)
 - We know \(r \) is unit length and each column of \(M \) sums to one, so \(Mr \leq 1 \)

- We can now efficiently solve for \(r! \)
 The method is called Power iteration

NOTE: \(x \) is an eigenvector with the corresponding eigenvalue \(\lambda \) if:
\[Ax = \lambda x \]
Example: Flow Equations & M

\[r = M \cdot r \]

\[
\begin{align*}
 r_y &= r_y / 2 + r_a / 2 \\
 r_a &= r_y / 2 + r_m \\
 r_m &= r_a / 2
\end{align*}
\]

\[
\begin{bmatrix}
 y \\
 a \\
 m
\end{bmatrix}
=
\begin{bmatrix}
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 1 \\
 0 & \frac{1}{2} & 0
\end{bmatrix}
\begin{bmatrix}
 y \\
 a \\
 m
\end{bmatrix}
\]
Given a web graph with \(n \) nodes, where the nodes are pages and edges are hyperlinks.

Power iteration: a simple iterative scheme

- Suppose there are \(N \) web pages.
- Initialize: \(r^{(0)} = [1/N, \ldots, 1/N]^T \)
- Iterate: \(r^{(t+1)} = M \cdot r^{(t)} \)
- Stop when \(|r^{(t+1)} - r^{(t)}|_1 < \varepsilon \)

\[|x|_1 = \sum_{1 \leq i \leq N} |x_i| \] is the \(L_1 \) norm. Can use any other vector norm, e.g., Euclidean.
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - **1:** $r'_j = \sum_{i\to j} \frac{r_i}{d_i}$
 - **2:** $r = r'$
 - Goto 1

- **Example:**

\[
\begin{pmatrix}
 r_y \\
r_a \\
r_m
\end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}
\]

Iteration 0, 1, 2, …
PageRank: How to solve?

- **Power Iteration:**
 - Set $r_j = 1/N$
 - $1: r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - $2: r = r'$
 - Goto 1

- **Example:**

\[
\begin{pmatrix}
 r_y \\
r_a \\
r_m
\end{pmatrix} =
\begin{pmatrix}
 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\
 1/3 & 3/6 & 1/3 & 11/24 & \ldots & 6/15 \\
 1/3 & 1/6 & 3/12 & 1/6 & 3/15
\end{pmatrix}
\]

Iteration 0, 1, 2, …

\[
\begin{array}{ccc}
 y & a & m \\
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 1 \\
 0 & \frac{1}{2} & 0 \\
\end{array}
\]

\[
\begin{align*}
 r_y &= \frac{r_y}{2} + \frac{r_a}{2} \\
 r_a &= \frac{r_y}{2} + \frac{r_m}{2} \\
 r_m &= \frac{r_a}{2}
\end{align*}
\]
Why Power Iteration works? (1)

- **Power iteration:**
 A method for finding dominant eigenvector (the vector corresponding to the largest eigenvalue)
 - $r^{(1)} = M \cdot r^{(0)}$
 - $r^{(2)} = M \cdot r^{(1)} = M(Mr^{(1)}) = M^2 \cdot r^{(0)}$
 - $r^{(3)} = M \cdot r^{(2)} = M(M^2r^{(0)}) = M^3 \cdot r^{(0)}$

- **Claim:**
 Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, ... M^k \cdot r^{(0)}, ...$ approaches the dominant eigenvector of M
Why Power Iteration works? (2)

- **Claim:** Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \ldots M^k \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

- **Proof:**
 - Assume M has n linearly independent eigenvectors, x_1, x_2, \ldots, x_n with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, where $\lambda_1 > \lambda_2 > \ldots > \lambda_n$
 - Vectors x_1, x_2, \ldots, x_n form a basis and thus we can write: $r^{(0)} = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$
 - $M r^{(0)} = M(c_1 x_1 + c_2 x_2 + \cdots + c_n x_n)$

 $= c_1 (M x_1) + c_2 (M x_2) + \cdots + c_n (M x_n)$

 $= c_1 (\lambda_1 x_1) + c_2 (\lambda_2 x_2) + \cdots + c_n (\lambda_n x_n)$
 - Repeated multiplication on both sides produces $M^k r^{(0)} = c_1 (\lambda_1^k x_1) + c_2 (\lambda_2^k x_2) + \cdots + c_n (\lambda_n^k x_n)$
Why Power Iteration works? (3)

- **Claim:** Sequence $M \cdot r^{(0)}, M^2 \cdot r^{(0)}, \ldots M^k \cdot r^{(0)}, \ldots$ approaches the dominant eigenvector of M

- **Proof (continued):**
 - Repeated multiplication on both sides produces

 $$M^k r^{(0)} = c_1(\lambda_1^k x_1) + c_2(\lambda_2^k x_2) + \cdots + c_n(\lambda_n^k x_n)$$

 $$= \lambda_1^k \left[c_1 x_1 + c_2 \left(\frac{\lambda_2}{\lambda_1}\right)^k x_2 + \cdots + c_n \left(\frac{\lambda_2}{\lambda_1}\right)^k x_n \right]$$

 Since $\lambda_1 > \lambda_2$ then fractions $\frac{\lambda_2}{\lambda_1}, \frac{\lambda_3}{\lambda_1}, \ldots < 1$
 and so $\left(\frac{\lambda_i}{\lambda_1}\right)^k = 0$ as $k \to \infty$ (for all $i = 2 \ldots n$).

 - **Thus:** $M^k r^{(0)} \approx c_1(\lambda_1^k x_1)$
 - Note if $c_1 = 0$ then the method won’t converge
Random Walk Interpretation

- Imagine a random web surfer:
 - At any time t, surfer is on some page i
 - At time $t + 1$, the surfer follows an out-link from i uniformly at random
 - Ends up on some page j linked from i
 - Process repeats indefinitely

- Let:
 - $p(t)$... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
 - So, $p(t)$ is a probability distribution over pages
The Stationary Distribution

- Where is the surfer at time $t+1$?
 - Follows a link uniformly at random
 \[p(t+1) = M \cdot p(t) \]
 - Suppose the random walk reaches a state
 \[p(t+1) = M \cdot p(t) = p(t) \]
 then $p(t)$ is **stationary distribution** of a random walk

- Our original rank vector r satisfies \[r = M \cdot r \]
 - So, r is a stationary distribution for the random walk
A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time $t = 0$.

PageRank: The Google Formulation
PageRank: Three Questions

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]

or equivalently

\[r = Mr \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

- **Example:**

 $r_a = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

 r_b

 Iteration 0, 1, 2, …
Does it converge to what we want?

Example:

\[\begin{align*}
 r_a &= 1 \quad 0 \quad 0 \quad 0 \\
 r_b &= 0 \quad 1 \quad 0 \quad 0 \\
\end{align*} \]

Iteration 0, 1, 2, …
PageRank: Problems

2 problems:

- (1) Some pages are **dead ends**
 (have no out-links)
 - Random walk has “nowhere” to go to
 - Such pages cause importance to “leak out”

- (2) **Cycles**:
 (all out-links are within the group)
 - Random walked gets “stuck” in a trap
 - Eventually cycles absorb all importance
Problem: Cycle

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

 \[
 \begin{pmatrix}
 r_y \\
 r_a \\
 r_m
 \end{pmatrix} =
 \begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 3/6 & 7/12 & 16/24 & 1
 \end{pmatrix}
 \]

 Iteration 0, 1, 2, ...

 All the PageRank score gets “trapped” in node m.
The Google solution for cycles: At each time step, the random surfer has two options
- With prob. β, follow a link at random
- With prob. $1-\beta$, jump to some random page
- Common values for β are in the range 0.8 to 0.9

Surfer will teleport out of cycle within a few time steps
Problem: Dead Ends

- **Power Iteration:**
 - Set \(r_j = 1 \)
 - \(r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \)
 - And iterate

- **Example:**

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} =
\begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \vdots & 0 \\
 1/3 & 1/6 & 1/12 & 2/24 & 0
\end{pmatrix}
\]

Iteration 0, 1, 2, ...

Here the PageRank “leaks” out since the matrix is not stochastic.
Solution: Always Teleport!

- **Teleports**: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

\[
\begin{array}{ccc}
\ y & \ a & \ m \\
\ y & \frac{1}{2} & \frac{1}{2} & 0 \\
\ a & \frac{1}{2} & 0 & 0 \\
\ m & 0 & \frac{1}{2} & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
\ y & \ a & \ m \\
\ y & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} \\
\ a & \frac{1}{2} & 0 & \frac{1}{3} \\
\ m & 0 & \frac{1}{2} & \frac{1}{3} \\
\end{array}
\]
Why are dead-ends and cycles problem and why do teleports solve the problem?

- **Cycles** are not a “problem”, but with them, PageRank scores are **not** what we want
 - **Solution:** Never get stuck in a cycle by teleporting out of it in a finite number of steps

- **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - **Solution:** Make matrix column stochastic by always teleporting when there is nowhere to go
Solution: Random Teleports

- **Google’s solution that does it all:**
 At each step, random surfer has two options:
 - With probability β, follow a link at random
 - With probability $1 - \beta$, jump to some random page

- **PageRank equation** [Brin-Page, 98]

$$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.
The Google Matrix

- **PageRank equation** [Brin-Page, ‘98]

\[
 r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}
\]

- **The Google Matrix A:**

\[
 A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}
\]

- We have a recursive problem: \(r = A \cdot r \)

 And the Power method still works!

- **What is \(\beta \)?**
 - In practice \(\beta = 0.8, 0.9 \) (make 5 steps on avg., jump)
Random Teleports \((\beta = 0.8)\)

\[
M = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1
\end{pmatrix}
\]

\[
\left[\frac{1}{N}\right]_{N \times N} = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}
\]

\[
A = \begin{pmatrix}
\frac{7}{15} & \frac{7}{15} & \frac{1}{15} \\
\frac{7}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{15} & \frac{7}{15} & \frac{13}{15}
\end{pmatrix}
\]

\[
y \begin{pmatrix}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{pmatrix}
\begin{pmatrix}
0.33 \\
0.20 \\
0.46
\end{pmatrix}
\begin{pmatrix}
0.24 \\
0.20 \\
0.52
\end{pmatrix}
\begin{pmatrix}
0.26 \\
0.18 \\
0.56
\end{pmatrix}
\begin{pmatrix}
7/33 \\
5/33 \\
21/33
\end{pmatrix}
\]

How do we actually compute the PageRank?
Computing Page Rank

- Key step is matrix-vector multiplication
 - $r_{\text{new}} = A \cdot r_{\text{old}}$
- Easy if we have enough main memory to hold A, r_{old}, r_{new}
- Say $N = 1$ billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N^2 entries
 - 10^{18} is a large number!

\[
A = \beta \cdot M + (1-\beta) \left[\frac{1}{N} \right]_{N \times N}
\]

\[
A = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1 \\
\end{bmatrix} + 0.2
\]

\[
= \begin{bmatrix}
7/15 & 7/15 & 1/15 \\
7/15 & 1/15 & 1/15 \\
1/15 & 7/15 & 13/15 \\
\end{bmatrix}
\]
Suppose there are N pages
Consider page i, with d_i out-links
We have $M_{ji} = 1/|d_i|$ when $i \rightarrow j$
and $M_{ji} = 0$ otherwise

The random teleport is equivalent to:
- Adding teleport link from i to every other page and setting transition probability to $(1 - \beta)/N$
- Reducing the probability of following each out-link from $1/|d_i|$ to $\beta/|d_i|$
- Equivalent: Tax each page a fraction $(1 - \beta)$ of its score and redistribute evenly
Rearranging the Equation

- \(r = A \cdot r, \) where \(A_{ji} = \beta \ M_{ji} + \frac{1-\beta}{N} \)

- \(r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i \)

- \(r_j = \sum_{i=1}^{N} \left[\beta \ M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i \)

 \[= \sum_{i=1}^{N} \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i \]

 \[= \sum_{i=1}^{N} \beta \ M_{ji} \cdot r_i + \frac{1-\beta}{N} \quad \text{since} \ \sum r_i = 1 \]

- **So we get:** \(r = \beta \ M \cdot r + \left[\frac{1-\beta}{N} \right]_{N} \)

Note: Here we assumed \(M \) has no dead-ends

\([x]_N \ldots \text{a vector of length} \ N \text{with all entries} \ x\)
Sparse Matrix Formulation

We just rearranged the **PageRank equation**

\[r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right]_N \]

- where \([(1-\beta)/N]_N\) is a vector with all \(N\) entries \((1-\beta)/N\)

- **\(M\) is a sparse matrix!** (with no dead-ends)
 - 10 links per node, approx 10N entries
 - So in each iteration, we need to:
 - Compute \(r^\text{new} = \beta M \cdot r^\text{old}\)
 - Add a constant value \((1-\beta)/N\) to each entry in \(r^\text{new}\)
 - Note if \(M\) contains dead-ends then \(\sum_j r_j^\text{new} < 1\) and we also have to renormalize \(r^\text{new}\) so that it sums to 1
If the graph has no dead-ends then the amount of leaked PageRank is \(1 - \beta\). But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing \(S\).

\[
S = \sum_j r_j^{\text{new}}
\]

PageRank: The Complete Algorithm

Input: Graph \(G\) and parameter \(\beta\)
- Directed graph \(G\) (can have spider traps and dead ends)
- Parameter \(\beta\)

Output: PageRank vector \(r^{\text{new}}\)

1. Set: \(r_j^{\text{old}} = \frac{1}{N}\)
2. Repeat until convergence:
 \[\sum_j |r_j^{\text{new}} - r_j^{\text{old}}| > \varepsilon\]
 - For all \(j\):
 \[r_j^{\text{new}} = \sum_{i \to j} \beta \frac{r_i^{\text{old}}}{d_i}\]
 - \(r_j^{\text{new}} = 0\) if in-degree of \(j\) is 0
 - Now re-insert the leaked PageRank:
 \[r_j^{\text{new}} = r_j^{\text{new}} + \frac{1 - S}{N}\]
 where: \(S = \sum_j r_j^{\text{new}}\)

\(r^{\text{old}} = r^{\text{new}}\)
Some Problems with Page Rank

- **Measures generic popularity of a page**
 - Biased against topic-specific authorities
 - **Solution:** Topic-Specific PageRank (next)

- **Uses a single measure of importance**
 - Other models of importance
 - **Solution:** Hubs-and-Authorities

- **Susceptible to Link spam**
 - Artificial link topographies created in order to boost page rank
 - **Solution:** TrustRank