Lec 08–??: Mining Data Streams

COSC–254 – February 18–??, 2019
Outline

Data streams: motivation, applications, model(s), queries

Approximate *query answering*: reservoir sampling

Approximate *set membership*: Bloom filters

Approximate *counting*: The Flajolet-Martin approach

Approximate *counting on sliding windows*: The DGIM Algorithm
Data streams

Sensor data: *continuously* transmit (measurements of) quantities of interest

 - temperature, location, traffic, stock prices, web search queries, …

Stream of data elements:

\[e_{t-2}, \quad e_{t-1}, \quad e_t, \quad e_{t+1}, \quad \ldots \quad \text{text}

Element seen at time \(t \geq 0 \)

EXAMPLE: elements are *tuples* of (temperature, wind speed, humidity)

3-tuple

\[(15^\circ, 20 \text{mph}, 52\%), \quad (18^\circ, 10 \text{mph}, 64\%), \quad \ldots \]
The dataset is *never complete*: data points are appended at each timestep:

\[
\mathcal{D}_{t+1} = \mathcal{D}_t \cup \{ e_{t+1} \}
\]

\(\mathcal{D}_0 = \emptyset, \mathcal{D}_1 = \{ e_1 \}, \ldots \)

Task: for each \(t \), compute quantity/ies of interest \(q = f(\mathcal{D}_t) \) (standing queries).

Example: wind-chill at each time \(t \), average temperature over the past 7 days.
Data streams

Properties of the data that make the task hard:

1) The data is essentially *infinite*;
2) Input elements arrive *very fast*
 (think: Instagram photos, stock prices, security camera frame)

Consequences:

1) *cannot store the entire stream* accessibly;
2) must *compute query answer fast*.
Stream processing model

Figure from slides at http://mmds.org
Queries

Filtering: select all elements with property x

Counting distinct elements (possibly in the last k elements seen)

Moment estimation: estimate the average or the standard deviation
 (possibly of the last k elements)

Find frequent elements
Applications

How many distinct users visited my website in the last month?

Mining streams of web search queries:
 what queries are *more frequent* today than yesterday?

Mining click streams:
 what web pages are getting an *unusual* number of hits in the past three hour?

Mining social network status updates:
 is there an earthquake happening right now in California? A protest in Cairo?
More applications

Sensor networks:
With a million of sensors sending 4 bytes every 1/10 of seconds,
you get a million data points per 1/10 of second, 3.5 terabytes per day.

IP packets monitored at a switch:
Is there a flow of packets that would benefit from different routing decision?
Are there unusual patterns in the flow? (denial-of-service attacks)
Query answers

Answering queries *exactly* may not always be possible because of

1) the *limited working space*
2) computing the exact answer \(q_t = f(D_t) \) may *take too long*

Example: Count the distinct elements.

Can’t count exactly if the set of distinct elements is larger than the number of elements I can store

Example: Mine the frequent itemsets from the last \(k \) elements.

Would take too long
Approximations

ISSUE: Impossible to compute the exact answer and compute it fast.

SOLUTION: Compute *approximate answer* $\tilde{q}_t = \tilde{f}(D_t)$

$$\tilde{q}_t \approx q_t \quad \text{for every } t > 0$$

Computer scientist task: Given a query f, design an algorithm \tilde{f} that:

1) “approximate” f for *all possible* input datasets;
2) uses a *small working space*;
3) is *fast* in computing the approximation
Why shall we be happy with approximate answers?

1) We cannot compute anything else;

2) *High-quality* approximations are still *very useful*;

3) Exact answers have *little value* in a streaming setting;
Outline

- **Data streams**: motivation, applications, model(s), queries

 Approximate *query answering*: reservoir sampling

 Approximate *set membership*: Bloom filters

 Approximate *counting*: The Flajolet-Martin approach

 Approximate *counting on sliding windows*: The DGIM Algorithm
We cannot store the whole stream? Let’s store a subset S_t of D_t

How to compute the approximate answer \tilde{q}_t?
Possible answer: $\tilde{q}_t = f(S_t)$ (i.e., use the same f)

Example:

$f = \text{average}: \tilde{q}_t$ works well on some subsets;
We need a way to keep a representative subset
Easiest way to build a representative subset: select one \textit{(uniformly) at random}

Each element has the same probability of being in the sample (being \textit{sampled})

How to create a random sample?

Approach 1: select a \textit{fixed proportion} of elements in the stream (1 in 10)

Approach 2: Maintain a random sample of fixed size size
Sampling a fixed proportion

Scenario: Web search query stream:

\((\text{user}_t, \text{search}_t), (\text{user}_{t-1}, \text{search}_{t+1}), \ldots\)

Query: What fraction of the typical user’s queries are repeated?

Naïve approach to build the sample:

For each \(t\), generate a random integer \(i_t\) from \([0 \ldots 9]\)
Add the element \(e_t\) to \(S_t\) if \(i_t = 0\).

Answering the query:

for each user \(u\), count the fraction \(r_u\) of repeated queries in \(S_t\),
then take the average of \(r_u\) over the users
Issues with the naïve approach

Suppose each user issues x queries once, and d queries twice (total $x + 2d$ queries)

Correct query answer: $\frac{d}{x + d}$

The typical sample will contain:
- $x/10$ of the singleton queries
- $d/100$ pairs of duplicates ($d/100 = d \times \left(\frac{1}{10} \times \frac{1}{10}\right)$)
- $18d/100$ of the d duplicates, each appearing exactly once. ($18d/100 = d \times \left(\frac{1}{10} \times \frac{9}{10} \right) + \left(\frac{9}{10} \times \frac{1}{10}\right)$)

Naïve approach answer:

$$\frac{x/10 + d/100 + 18d/100}{10x + 19d} = \frac{d}{10x + 19d}$$
Solution: sample users!

Pick $1/10^{th}$ of users and add all their searches to the sample.

How to decide whether a user is one of the “sampled” one?

Use a hash function h that hashes user names uniformly into 10 buckets. If the $h(user_t) = 0$, add $e_t = (user_t, search_t)$ to S_t.
Generalized solution

Stream of tuples with keys:

Key is a subset of the components of each tuple (e.g., user\textsubscript{t})
Choice of key depends on application

To get a sample of a/b fraction of the stream:

Hash each tuple’s key uniformly into b buckets $[0, \ldots, b - 1]$
Add the tuple to the sample if the hash value is less than a

Example: To generate a 30\% sample, what is b and what is a?

$b = 10$ and $a = 3$.
A problem with the previous approach is that the size of the sample grows with time.

Our memory may not grow as fast. It may even be fixed to exactly \(s \) tuples.

How to build a fixed-size random sample that is representative of all elements seen so far?

For all time steps \(k \),

each of the \(k \) elements seen so far must have the same probability of being in \(S_k \).
Reservoir sampling

Algorithm:

\[S \leftarrow \emptyset \]

If \(t \leq s \), store the \(e_t \) in \(S \)

Else \hspace{1em} // i.e., when \(t > s \)

\hspace{1em} \text{flip a biased coin that has probability of head equal to } \frac{s}{t}

\hspace{1em} \text{If outcome is tail, discard } e_t

\hspace{1em} \text{Else } \hspace{1em} // \text{i.e., when outcome is head}

\hspace{2em} \text{choose an element of } S \text{ uniformly at random and replace it with } e_t

Lemma:

At each time \(t \), the sample \(S_t \) is such that each element \(e_k, k \leq t \) has probability \(\min\{1, \frac{s}{t}\} \) of being in \(S_t \).

Proof: Next time