Lec 07: Compressing Itemsets

COSC–254 – February 18, 2019
Outline

The itemsets explosion and what to do about it

Maximal Frequent Itemsets

Closed Frequent Itemsets
The pattern flood

Consider the following dataset

<table>
<thead>
<tr>
<th>tid</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

How many itemsets with support at least 1? 255

How many itemsets with freq. at least 1/2? 31

“The goal of DM is to *summarize* data”.

In these cases, the set of FIs is hardly a summary.

Image by J. Vreeken.
The wine dataset has 178 transactions, built upon 14 items.

Image by J. Vreeken.
Pattern Explosion

With *high* min.supp. thresholds, you find *only few* patterns.

Most of them are “common knowledge” and not very interesting (e.g., \{bread, milk\})

With *low* min.supp. thresholds, you find an *very large* number of patterns.

Many are *potentially* interesting, but:

1) many are *noise*: happen too few times to *generalize* from them
2) there are *orders of magnitude* more patterns than rows in the data.
Curbing the explosion

Idea: *compress* the collection of FIs

How:

1. Impose a strict *local criterion* for patterns, to remove *locally redundant* patterns.
2. Return only the non-redundant patterns

Depending on the local criterion, the compression may be *lossless* or *lossy*.
The itemsets explosion and what to do about it

Maximal Frequent Itemsets
Closed Frequent Itemsets

Different local criteria
Q: Is there a subset of $\text{FI}(\mathcal{D}, \ell)$ from which we can reconstruct $\text{FI}(\mathcal{D}, \ell)$?

A: the set of FIs for which no superset is a FI.

Image by J. Vreeken
Maximal Frequent Itemsets

Definition (Maximal Frequent Itemset)

A FI $A \in \text{FI}(\mathcal{D}, \ell)$ is maximal if and only if none of its supersets is frequent. I.e., for each $B \supseteq A$, it holds $\text{supp}_\mathcal{D}(B) < \ell$.

Obtaining the MFIs can be done easily by post-processing $\text{FI}(\mathcal{D}, \ell)$.
Maximal Frequent FIs: Example

Def: A FI is *maximal* if and only if none of its supersets is frequent.

Let the min. supp. thres. be 3. Which of the following itemsets are maximal and why?

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
<th>Maximal?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td>4</td>
<td>✗</td>
<td>{a, b} is frequent</td>
</tr>
<tr>
<td>{b}</td>
<td>5</td>
<td>✗</td>
<td>{a, b} is frequent</td>
</tr>
<tr>
<td>{c}</td>
<td>3</td>
<td>✗</td>
<td>{b, c} is frequent</td>
</tr>
<tr>
<td>{a, b}</td>
<td>4</td>
<td>✔</td>
<td>{a, b, c} is only superset and is not frequent</td>
</tr>
<tr>
<td>{a, c}</td>
<td>2</td>
<td>✗</td>
<td>Not frequent</td>
</tr>
<tr>
<td>{b, c}</td>
<td>3</td>
<td>✔</td>
<td>{a, b, c} is only superset and is not frequent</td>
</tr>
<tr>
<td>{a, b, c}</td>
<td>2</td>
<td>✗</td>
<td>Not frequent</td>
</tr>
</tbody>
</table>

Example from slides at http://mmds.org.
Reconstructing the FIs

With the set of MFIs we can reconstruct $\text{Fl}(\mathcal{D}, \ell)$. How?

$\text{Fl}(\mathcal{D}, \ell)$ contains all and only the subsets of each MFI:

X is frequent if and only if there exists a MFI Y such that $X \subseteq Y$.

Q: Do we lose any information?

Yes: no information about the support of frequent-but-not-maximal X.

MFIs are a lossy representation of $\text{Fl}(\mathcal{D}, \ell)$.
The itemsets explosion and what to do about it

Maximal Frequent Itemsets (lossy)

Closed Frequent Itemsets (lossless)
Local criteria

The “local” criterion for MFIs is not very local.

Lack of locality causes the loss in information.

Solution: find a more local criterion.

We need to somehow be able to keep track of “where” in the lattice the support *changes*.

Idea: if A and B, with $B \supset A$, have the *same support*, then A and its support can be reconstructed from B.

No loss of information!
Closed Frequent Itemsets

Definition (Closed Frequent Itemset)

An itemset \(A \in \text{FI}(\mathcal{D}, \ell) \) is a Closed Frequent Itemset (CFI) iff all its supersets have smaller support than \(A \). I.e.,

\[
\text{for each } B \supset A, \text{supp}_\mathcal{D}(B) < \text{supp}_\mathcal{D}(A)
\]

Finding the set of CFIs can be done by post-processing of \(\text{FI}(\mathcal{D}, \ell) \).

Quite expensive if done naïvely, but there are smart algorithms (Charm)
Closed Frequent Itemsets: Example

Images by J. Vreeken
Reconstructing the FIs

Given *all* closed frequent itemsets we can reconstruct $\text{FI}(\mathcal{D}, \ell)$ *including the supports*:

- X is frequent if it is a subset of a closed frequent itemset;
- $\text{supp}_D(X) = \max\{\text{supp}_D(Z) : X \subseteq Z, Z \text{ is frequent and closed}\}$
Why “closed”?

Consider the following functions:

\(t(X) \) returns all transactions that contain itemset \(X \)

\(i(T) \) returns all items that are contained in every transaction of a set \(T \) of transactions

The closure function \(c(X) \) maps itemsets to itemsets by

\[
 c(X) = (i \circ t)(X) = i(t(X))
\]

The closure function is:

- extensive: \(X \subseteq c(X) \)
- monotonic: if \(X \subseteq Y \), then \(c(X) \subseteq c(Y) \)
- idempotent: \(c(c(X)) = c(X) \).

Itemset \(X \) is closed if and only if \(X = c(X) \).
There are many other ways of summarizing the FIs:

Non-Derivable FIs, constrained FIs, itemsets that compress, …

Image by J. Vreeken
The itemsets explosion and what to do about it

Maximal Frequent Itemsets (lossy representation of $\text{FI}(D, \ell)$)

Closed Frequent Itemsets (lossless representation)
Pattern mining recap

- Itemsets: basic definitions, support,
- Anti-monotonicity of the support
- Apriori and Eclat
- Association rules: basic definitions, support, confidence
- Pruning of rules by support
- Pruning of rules by confidence
- Algorithm to mine ARs
- Pattern explosion
- Maximal Frequent Itemsets
- Closed Frequent Itemsets