Lec 05–06: Association Rules and Pattern Mining Algorithms

COSC–254 – February 11–13, 2019
Outline

Recap about Frequent Itemsets

Association Rules
- Definitions
- Measures of interestingness and their properties
- Mining task
- Algorithm

Algorithms to mine the Frequent Itemsets
- Apriori
- Eclat
Recap: Definitions

- **Items** \mathcal{I}
- **Dataset** $\mathcal{D} = \{t_1, \ldots, t_n\}$ of transactions, $t_i \subseteq \mathcal{I}$, $i = 1, \ldots, n$.
- **Itemset** $A \subseteq \mathcal{I}$
 - support of A in \mathcal{D}: $\text{supp}_\mathcal{D}(A) = |\{t \in \mathcal{D} : A \subseteq t\}|$.
 - frequency of A in \mathcal{D}: $\text{freq}_\mathcal{D}(A) = \frac{\text{supp}_\mathcal{D}(A)}{n}$
- Given a minimum support threshold ℓ, the Frequent Itemsets in \mathcal{D} w.r.t. ℓ:
 $$\text{FI}(\mathcal{D}, \ell) = \{A \subseteq \mathcal{I} : \text{supp}_\mathcal{D}(A) \geq \ell\}$$

For a minimum frequency threshold θ,
$$\text{FI}(\mathcal{D}, \theta) = \{A \subseteq \mathcal{I} : \text{freq}_\mathcal{D}(A) \geq \theta\}$$
Recap: the Itemset Lattice and the Naïve Search Strategy

Naïve mining strategy:
Traverse the lattice (BFS or DFS), and compute support for each visited itemset.

Time to get $\text{supp}_D(A)$: $O(|I| |D|)$ ($O(|I|)$ to check whether $t \in D$ contains A)

Total mining time for the naïve strategy: $O(2^{|I|} |I| |D|)$

Figure from J. Vreeken.
Recap: Anti-Monotonicity Property of the Support

Theorem (Anti-monotonicity of the support)

For any $A \subset B \subseteq \mathcal{I}$, it holds

\[\text{supp}_D(A) \geq \text{supp}_D(B) \]

A.k.a. downward closure

The anti-monotonicity gives us a possible way to prune the search space.

Corollary (Sufficient condition for pruning)

For any $B \subseteq \mathcal{I}$,

if $\exists A \subset B$ s.t. $A \notin \text{Fl}(D, \ell)$, then $B \ldots \notin \text{Fl}(D, \ell)$.
Recap: the Negative Border

Minimum support in the figure: $\ell = 2$

Finding the **Negative Border** is equivalent to finding the FIs.

Figure from J. Vreeken.
Outline

✓ Recap about Frequent Itemsets

Association Rules
• Definitions
• Measures of interestingness and their properties
• Mining task
• Algorithm

Algorithms to mine the Frequent Itemsets
• Apriori
• Eclat
Definition (Association Rule)

An expression in the form \(A \Rightarrow B \)

for \(A, B \subset I, A \cap B = \emptyset \)

INTERPRETATION: Transactions containing \(A \) also *often* contain \(B \).

EXAMPLE: customers buying a camera also *often* buy a memory card and a battery.
Search space of ARs

(AR: $A \Rightarrow B$, $A, B \subset \mathcal{I}$, $A \cap B = \emptyset$)

Q: Given \mathcal{I}, $|\mathcal{I}| = m$, how many possible ARs are there?

A: Possible ARs: $\sum_{k=2}^{m} \left[\binom{m}{k} (2^k - 2) \right] \approx O(2^{2m})$

Must define an interestingness measure to assign a score to each AR:

Interestingness measure $g : ARs \rightarrow [0, 1]$

We can then use g to find the most interesting ARs (w.r.t. g).

The measure g we define will be a combination of two measures.
Interestingness measure for ARs

\[(A, B \subseteq I, A \cap B = \emptyset)\]

\[A \Rightarrow B = \text{“when } A \subseteq t \in \mathcal{D}, \text{ often also holds } B \subset t\]"

\[A \subseteq t \land B \subseteq t \iff A \cup B \subseteq t\]

If \(\text{supp}_\mathcal{D}(A \cup B)\) is small, \(A \Rightarrow B\) is not interesting.

Definition (Support of AR \(A \Rightarrow B\) in \(\mathcal{D}\))

\[\text{supp}_\mathcal{D}(A \Rightarrow B) = \text{supp}_\mathcal{D}(A \cup B)\]

The support takes part in defining an interestingness measure for ARs.
Interestingness measure for ARs

\((A, B \subseteq \mathcal{I}, A \cap B = \emptyset)\)

\[A \Rightarrow B = \text{“ when } A \subseteq t \in \mathcal{D}, \text{ often also holds } B \subset t \text{”} \]

For interesting ARs, it should hold

\[\text{supp}_D(A \cup B) \approx \text{supp}_D(A) \]

The closest the supports are, the more interesting \(A \Rightarrow B\)

Definition (Confidence of AR \(A \Rightarrow B\) in \(\mathcal{D}\))

\[\text{conf}_D(A \Rightarrow B) = \frac{\text{supp}_D(A \cup B)}{\text{supp}_D(A)} \in [0, 1] \]

Interesting rules should have *high confidence*.
Example

\[t_1 = \{m, c, b\}, \quad t_2 = \{m, p, j\}, \quad t_3 = \{m, b\}, \quad t_4 = \{c, j\}, \]
\[t_5 = \{m, b, p\}, \quad t_6 = \{m, c, b, j\}, \quad t_7 = \{c, b, j\}, \quad t_8 = \{b, c\} \]

AR \{m, b\} \Rightarrow \{c\}

Support: \(\text{supp}_D(\{m, b\} \Rightarrow \{c\}) = \text{supp}_D(\{m, b, c\}) = 2 \)

Confidence: \(\text{conf}_D\{m, b\} \Rightarrow \{c\} = \frac{2}{4} = 0.5 \)

Example from slides at \text{http://mmds.org}. \[12 \]
The AR mining task

Given a dataset \mathcal{D} and

- a minimum \textit{support} threshold ℓ (or min. freq. thres. θ); and
- a minimum \textit{confidence} threshold $\gamma \in [0, 1]$

Find

$$\text{AR}(\mathcal{D}, \ell, \gamma) = \{ A \Rightarrow B : \text{supp}_D(A \Rightarrow B) \geq \ell \land \text{conf}_D(A \Rightarrow B) \geq \gamma \}$$

The search space is huge, we need a \textit{smart pruning strategy}.
Pruning strategy for ARs

Only rules \(A \Rightarrow B \) s.t. \(\text{supp}_D(A \Rightarrow B) = \text{supp}_D(A \cup B) \geq \ell \) may be in \(\text{AR}(D, \ell, \gamma) \).

Lemma (Sufficient condition for pruning ARs)

If \(\text{supp}_D(A \cup B) < \ell \), then \(\text{supp}_D(A \Rightarrow B) < \ell \) and
\[
A \Rightarrow B \notin \text{AR}(D, \ell, \gamma)
\]

Knowing that \(\text{supp}_D(A \cup B) < \ell \) allow us to prune \(2^{|A \cup B|} - 2 \) ARs.

Q: What are the \(G \subseteq \mathcal{I} \) s.t. \(\text{supp}_D(G) \geq \ell \)?

A: \(\text{FI}(D, \ell) \).

Idea for finding \(\text{AR}(D, \ell, \gamma) \):

First find \(\text{FI}(D, \ell) \), then use it to generate rules, and check their confidence.
Generating & pruning ARs

Q: How to generate and prune rules in a smart way?

A: Study properties of the confidence

Theorem

For any non-empty \(A, B \subseteq I \), such that \(A \cap B = \emptyset \), it holds

\[
\text{conf}_D(A \cup \{a\} \Rightarrow B \setminus \{a\}) \geq \text{conf}_D(A \Rightarrow B)
\]

for any \(a \in B \).

Proof: HW03

Corollary (Sufficient condition for pruning ARs)

If \(\exists a \in I, a \in B \ s.t. \ \text{conf}_D(A \cup \{a\} \Rightarrow B \setminus \{a\}) < \gamma \), then

\[
\text{conf}_D(A \Rightarrow B) < \gamma
\]
Corollary (Sufficient condition for pruning ARs)

If $\exists a \in \mathcal{I}, a \in B$ s.t. $\text{conf}_D(A \cup \{a\} \Rightarrow B \setminus \{a\}) < \gamma$, then $\text{conf}_D(A \Rightarrow B) < \gamma$

Example:

$A = \{\text{camera}\}$, $B = \{\text{battery, mem. card}\}$

$\text{supp}_D(A) = 6$, $\text{supp}_D(B) = 2$, $\text{supp}_D(A \cup \{a\}) = 4$, $\text{supp}_D(A \cup B) = 2$

$\text{conf}_D(A \cup \{a\} \Rightarrow B \setminus \{a\}) = \frac{2}{4} = 0.5$

$\text{conf}_D(A \Rightarrow B) = \frac{2}{6} = 0.3$
Generating & pruning ARs

Let’s look at the search space.

Idea for smart search strategy:

1. Generate rules with short r.h.s., and check their confidence;
2. Generate a rule with larger r.h.s. only if all related “shorter” rules have confidence $\geq \gamma$
Algorithm for mining ARs

INPUT: dataset \mathcal{D}, min. supp. thres. ℓ, min. conf. thres. γ

OUTPUT: $\text{AR}(\mathcal{D}, \ell, \gamma)$

0. $Z \leftarrow \emptyset$ // to keep the interesting ARs

1. Mine $\text{FI}(\mathcal{D}, \ell)$ // coming soon

2. For each $G \in \text{FI}(\mathcal{D}, \ell)$ do

 2.0 For each $a \in G$, if $\text{conf}_\mathcal{D}(G \{a\} \Rightarrow \{a\}) \geq \gamma$, then $Z \leftarrow Z \cup \{G \{a\} \Rightarrow \{a\}\}$

 2.1 For each $A \subset G$ s.t. $1 \leq |A| < |G| - 2$ do // from long to short A

 2.1.a $B \leftarrow G \setminus A$

 2.1.b If, for each $a \in B$, “$A \cup \{a\} \Rightarrow B \setminus \{a\}$” is in Z, then

 2.1.b.i If $\text{conf}_\mathcal{D}(A \Rightarrow B) \geq \gamma$, then $Z \leftarrow Z \cup \{A \Rightarrow B\}$

3. Return Z
Example

Example from slides at http://mmds.org.

\[t_1 = \{m, c, b\}, \quad t_2 = \{m, p, j\}, \quad t_3 = \{m, c, b, n\}, \quad t_4 = \{c, j\}, \]
\[t_5 = \{m, b, p\}, \quad t_6 = \{m, c, b, j\}, \quad t_7 = \{c, b, j\}, \quad t_8 = \{b, c\} \]

Fix \(\ell = 3, \gamma = 0.75 \)

1) \(\text{FI}(\mathcal{D}, \ell) = \{\{b\}, \{m\}, \{c\}, \{j\}, \{b, m\}, \{b, c\}, \{c, m\}, \{c, j\}, \{m, c, b\}\} \)

2) Generate rules: E.g., for \(G = \{m, c, b\} \) (\(\text{supp}_\mathcal{D}(\{m, c, b\}) = 3 \)):

\(\{b, m\} \Rightarrow \{c\}: c = 3/4 \checkmark, \quad \{c, m\} \Rightarrow \{b\}: c = 3/3 \checkmark, \quad \{b, c\} \Rightarrow \{m\}: c = 3/5 \times, \)

We then know that \(\{b\} \Rightarrow \{m, c\} \) and \(\{c\} \Rightarrow \{m, b\} \) have conf. \(\leq 3/5 \times. \)

We need to check \(\{m\} \Rightarrow \{b, c\}: c = 3/5 \times. \)
AR Recap

- $A \Rightarrow B$: transactions containing A also often contain B
- $\text{conf}_D(A \Rightarrow B)$: confidence of $A \Rightarrow B$ in D
- $\text{AR}(D, \ell, \gamma)$: interesting ARs
- Properties of the confidence to prune the search space
- Algorithm to mine ARs

Outline

✓ Recap about Frequent Itemsets

✓ Association Rules
 • Definitions
 • Measures of interestingness and their properties
 • Mining task
 • Algorithm

Algorithms to mine the Frequent Itemsets
 • Apriori
 • Eclat

Different search strategies
Intuition behind Apriori

Task: Given dataset \mathcal{D} and min. supp. thres. ℓ, find $\text{FI}(\mathcal{D}, \ell)$.

Intuition for Apriori:

- *Level-wise exploration* of the lattice (BFS):
 go from low levels (short itemsets) to high levels (long itemsets)
- Not all itemsets are *candidate* FIs:
 use *antimonotonicity* to avoid generating and checking the support of any itemset that has an infrequent subset.
Intuition behind Apriori

(“Count” here means “Check the support of”)

Figure from slides at http://mmds.org.
Apriori

INPUT: dataset D, min. supp. thres. ℓ
OUTPUT: $\FI(D, \ell)$

$F_1 \leftarrow \{\{i\} : i \in \mathcal{I} \text{ s.t. } \supp_D(\{i\}) \geq \ell\}$ \hspace{1em} // Frequent items

$k \leftarrow 1$

While $F_k \neq \emptyset$ do

// Use F_k to generate candidates of length $k + 1$

$C_{k+1} \leftarrow \{A \subseteq \mathcal{I} : |A| = k + 1 \land \forall E \subset A, |E| = k, E \in F_k\}$

$F_{k+1} \leftarrow \emptyset$

For each $A \in C_{k+1}$ do

If $\supp_D(A) \geq \ell$ then $F_{k+1} \leftarrow F_{k+1} \cup \{A\}$

$k \leftarrow k + 1$

Return $F_1 \cup F_2 \cup \cdots \cup F_{k-1}$
Apriori in action

data

itemset lattice

Images by J. Vreeken
Apriori in action

Images by J. Vreeken

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

data

itemset lattice
Apriori in action

Data

Itemset lattice

Images by J. Vreeken
Apriori in action

Images by J. Vreeken

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

data

itemset lattice

Images by J. Vreeken
Apriori in action

Not generated as candidates, because subset cd is infrequent!

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

data

itemset lattice

Images by J. Vreeken
Improving the I/O of Apriori

From the pseudocode:

For each \(A \in C_{k+1} \) do
 If \(\text{supp}_D(A) \geq \ell \) then \(F_{k+1} \leftarrow F_{k+1} \cup \{A\} \)

Q: How do we compute the support of \(A \)?

For each \(A \in C_{k+1} \) do
 \(s_A \leftarrow 0 \)
 For each \(t \in D \), if \(A \subseteq t \), \(s_A \leftarrow s_A + 1 \)
 If \(s_A \geq \ell \) then \(F_{k+1} \leftarrow F_{k+1} \cup \{A\} \)

A scan of the dataset for each candidate is too expensive (up to \(O(2^{|I|}) \) scans!)
Improving the I/O of Apriori

For each $A \in C_{k+1}$ do

$S_A \leftarrow 0$

For each $t \in D$, if $A \subseteq t$, $s_A \leftarrow s_A + 1$

If $s_A \geq \ell$ then $F_{k+1} \leftarrow F_{k+1} \cup \{A\}$

How to speed it up? Switch the order of the loops!

Replace the lines above with the following:

$S_A \leftarrow 0$ for each $A \in C_{k+1}$

For each $t \in D$ do

For each $A \subseteq t$, $|A| = k + 1$ do

If $A \in C_{k+1}$ then $S_A \leftarrow S_A + 1$

$F_{k+1} \leftarrow \{A \in C_{k+1} : S_A \geq \ell\}$

Only one dataset scan per level, so $O(|D|)$ scans.
Outline

☑ Recap about Frequent Itemsets

☑ Association Rules
 • Definitions
 • Measures of interestingness and their properties
 • Mining task
 • Algorithm

Algorithms to mine the Frequent Itemsets
 • ✔ Apriori
 • Eclat

} Different search strategies
Eclat motivation

Q: Where does Apriori spend most of its time?
A: Computing the supports of itemsets

Eclat speed ups the computation of supports with *tidsets*

Definition (Tidset of \(A \subseteq \mathcal{I} \))

For any \(A \subseteq \mathcal{I} \), the *tidset* \(t(A) \) is the set of *transactions IDs* of the transactions containing \(A \):

\[
t(A) = \{ \text{tid} : (\text{tid}, t) \in \mathcal{D}, A \subseteq t \}
\]

Tidsets are *indices*, i.e., data structures that allow *fast access* to the rows (transactions) containing an itemset.
Tidsets

Definition:
\[t(A) = \{ \text{tid} : (\text{tid}, t) \in D, A \subseteq t \} \]

Fact

It holds
\[|t(A)| = \text{supp}_D(A). \]

Lemma

For any \(A, B \subseteq I \), *it holds*
\[t(A \cup B) = t(A) \cap t(B). \]
Example of tidsets

Definition: \(t(A) = \{ \text{tid} : (\text{tid}, t) \in \mathcal{D}, A \subseteq t \} \)

Lemma: For any \(A, B \subseteq \mathcal{I} \), it holds \(t(A \cup B) = t(A) \cap t(B) \).

Dataset:

\[
\begin{align*}
t_1 &= \{m, c, b\}, & t_2 &= \{m, p, j\}, & t_3 &= \{m, b\}, & t_4 &= \{c, j\}, \\
t_5 &= \{m, b, p\}, & t_6 &= \{m, c, b, j\}, & t_7 &= \{c, b, j\}, & t_8 &= \{b, c\} \\
\end{align*}
\]

\[
\begin{align*}
t(\{b, c\}) &= \{1, 6, 7, 8\} & t(\{m, c\}) &= \{1, 6\} \\
t(\{m, c, b\}) &= t(\{b, c\} \cup \{m, c\}) = t(\{b, c\}) \cap t(\{m, c\}) = \{1, 6\} \\
\end{align*}
\]
Eclat assumes that tidsets \(t(\{a\}) \) for each item \(a \in \mathcal{I} \) are available.

Idea: compute support of large itemsets by

1. *intersecting* tidsets of smaller itemsets; and
2. counting the cardinality of intersections.

Q: Of what subsets of \(A \) should we intersect the tidsets to obtain the support of \(A \)?
Prefix of an itemset

Additional assumption: \mathcal{I} is *ordered*, itemsets are *ordered* accordingly:

$$\mathcal{I} = \{1, 2, 3, \ldots \}, \quad A = \{3, 7, 8\}, \quad B = \{9, 25\}, \quad \ldots$$

Definition (Prefix of $A \subseteq \mathcal{I}$)

Given $A \subseteq \mathcal{I}$, the *prefix* of A is the subset of A containing the first $|A| - 1$ items:

$$A = \{a_1, \ldots, a_{\ell-1}, a_\ell\}$$

E.g.: $A = \{\text{camera, battery, mem. card}\}$, prefix = $\{\text{camera, battery}\}$
Prefix equivalence class

Definition (Prefix equivalence class (PEC) for $A \subset \mathcal{I}$)

For any itemset $A \subset \mathcal{I}$, the prefix equivalence class $\text{PEC}(A)$ is the set of all itemsets with prefix A:

$$\text{PEC}(A) = \{ A \cup \{a\} : a \in \mathcal{I} \}$$

E.g.: $\mathcal{I} = \{1, \ldots, 5\}$, $A = \{2, 3\}$,

$$\text{PEC}(A) = \{ \{2, 3, 4\}, \{2, 3, 5\} \}$$

Q: Of what subsets of A should we intersect the tidsets to obtain the support of A?

Eclat computes the support of $G = A \cup \{a\} \cup \{b\}$, $|G| = |A| + 2$ using the tidsets of $A \cup \{a\}$ and $A \cup \{b\}$, which are in $\text{PEC}(A)$:

$$\text{supp}_D(G) = |t(A \cup \{a\}) \cap t(A \cup \{b\})|$$

Eclat traverses the lattice in a depth-first search (DFS) way.
Eclat in action

First PEC with Ø as prefix

Images by J. Vreeken
Eclat in action

First PEC with \emptyset as prefix

2nd PEC with A as prefix

Images by J. Vreeken
First PEC with ∅ as prefix

2nd PEC with A as prefix

Infrequent!

Images by J. Vreeken
Eclat in action

First PEC with \emptyset as prefix
Eclat in action

First PEC with ø as prefix

Images by J. Vreeken
Eclat in action

First PEC with \(\emptyset \) as prefix

Images by J. Vreeken
Eclat in action

First PEC with \emptyset as prefix

This PEC only after everything starting with A is done

Images by J. Vreeken
Eclat vs. Apriori

Apriori explores the lattice in a \textit{breadth-first search} (BFS) way.

Eclat in a \textit{depth-first search} (DFS) way.

Eclat uses \textit{smart data structures} (tidsets) to speed-up support computation. These structures are fast only if they all fit into main memory.

Apriori limits the number of full dataset scans to $O(|I|)$. It is often the fastest when the data does not fit in memory.