COSC-254 Data Mining

Lec 02: MapReduce & Hadoop
Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
- ~4 months to read the web
- ~1,000 hard drives to store the web

Much more time to do something useful with the data!
Cluster Architecture

1 Gbps between any pair of nodes in a rack

2-10 Gbps backbone between racks

Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO

Machines fail:

- One server may stay up 3 years (1,000 days)
- If you have 1,000 servers, expect to lose 1/day
- People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day!
Distributed File System

- **Master node** (Name Node in Hadoop): keeps metadata
MapReduce: Overview

- Sequentially read units of data
- **Map:** for each unit, *extract* some “thing” you care about
- **Group by key:** *Sort* the things and *Shuffle*
- **Reduce:** *Aggregate*, filter, transform all the “equal” things
- Write the result
MapReduce: The Map Step

Input key-value pairs

Intermediate key-value pairs

...
MapReduce: The **Reduce** Step

Intermediate key-value pairs

Key-value groups

Output key-value pairs

Group by key

Intermediate key-value pairs

Key-value groups

Output key-value pairs

The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term space-based man/machine partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to need..."
Map-Reduce: A diagram

Input

Big document

Intermediate

- **MAP:** Read input and produces a set of key-value pairs

- **Group by key:** Collect all pairs with same key (Hash merge, Shuffle, Sort, Partition)

- **Reduce:** Collect all values belonging to the key and output

Output

- k1:v k1:v k2:v
- k1:v k3:v k4:v
- k4:v k5:v
- k4:v
- k1:v k3:v
What is the **muddiest point** about Hadoop/MR?

Hadoop environment takes care of:

- Partitioning the input data
- Scheduling the execution across a set of machines
- Performing the group by key step
- Handling machine failures
- Managing required inter-machine communication
map(key, value):
// key: document name; value: text of the document
 for each word w in value:
 emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(key, result)
Refinement: Combiners

Back to our word counting example:

- Combiner combines the values of all keys of a single mapper (single machine):

- Much less data needs to be copied and shuffled!